Thermoelectric (TE) materials have drawn a lot of attention as a promising technology to harvest waste heat and convert it into electrical energy. However, the toxicity and expense of inorganic TE materials along with high-temperature fabrication processes have limited their application. Additionally, the reduction of raw material resources, such as metals and petroleum is another limiting factor. Hence, developing low-cost, stable, and easily-created TE materials from renewable resources is attracting more and more interest for a wide range of applications including the internet of things and self-powered sensors. Herein, an efficacious processing strategy to fabricate printable TE materials has been developed with Ethyl cellulose (EC), a non-conducting polymer, as the polymer matrix and with Graphene nanoplatelets (GNPs) as fillers. EC, one of the cellulose's derivatives, has been widely used as a binder in the printing pastes. The conductive pastes with different filler contents have been fabricated. The weight ratio of GNPs and EC were ranged from 0.2 to 0.7. These conductive pastes have been deposited by blade coating on glass substrates. The electrical conductivity of the composites has increased polynomially as the filler content increased, whereas the Seebeck coefficient did not change significantly with the increased electrical conductivity. The highest electrical conductivity at room temperature (355.4 S m−1) was obtained for the ratio of 0.7. This ratio also had the maximum power factor value. Moreover, a 3D structure form (cylindrical pellet) from the highest conductive paste was also fabricated. The proposed technique demonstrates an industrially feasible approach to fabricate different geometries and structures for organic TE modules. So, this approach could provide a good reference for the production of high efficiency, low-temperature, lightweight, low-cost, TE materials.

Mardi, S., Risi Ambrogioni, M., Reale, A. (2020). Developing printable thermoelectric materials based on graphene nanoplatelet/ethyl cellulose nanocomposites. MATERIALS RESEARCH EXPRESS, 7(8), 085101 [10.1088/2053-1591/ababc0].

Developing printable thermoelectric materials based on graphene nanoplatelet/ethyl cellulose nanocomposites

Reale A.
2020-01-01

Abstract

Thermoelectric (TE) materials have drawn a lot of attention as a promising technology to harvest waste heat and convert it into electrical energy. However, the toxicity and expense of inorganic TE materials along with high-temperature fabrication processes have limited their application. Additionally, the reduction of raw material resources, such as metals and petroleum is another limiting factor. Hence, developing low-cost, stable, and easily-created TE materials from renewable resources is attracting more and more interest for a wide range of applications including the internet of things and self-powered sensors. Herein, an efficacious processing strategy to fabricate printable TE materials has been developed with Ethyl cellulose (EC), a non-conducting polymer, as the polymer matrix and with Graphene nanoplatelets (GNPs) as fillers. EC, one of the cellulose's derivatives, has been widely used as a binder in the printing pastes. The conductive pastes with different filler contents have been fabricated. The weight ratio of GNPs and EC were ranged from 0.2 to 0.7. These conductive pastes have been deposited by blade coating on glass substrates. The electrical conductivity of the composites has increased polynomially as the filler content increased, whereas the Seebeck coefficient did not change significantly with the increased electrical conductivity. The highest electrical conductivity at room temperature (355.4 S m−1) was obtained for the ratio of 0.7. This ratio also had the maximum power factor value. Moreover, a 3D structure form (cylindrical pellet) from the highest conductive paste was also fabricated. The proposed technique demonstrates an industrially feasible approach to fabricate different geometries and structures for organic TE modules. So, this approach could provide a good reference for the production of high efficiency, low-temperature, lightweight, low-cost, TE materials.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - ELETTRONICA
English
Con Impact Factor ISI
Mardi, S., Risi Ambrogioni, M., Reale, A. (2020). Developing printable thermoelectric materials based on graphene nanoplatelet/ethyl cellulose nanocomposites. MATERIALS RESEARCH EXPRESS, 7(8), 085101 [10.1088/2053-1591/ababc0].
Mardi, S; Risi Ambrogioni, M; Reale, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
p116_Mardi_2020_Mater._Res._Express_7_085101.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/265135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact