This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation-Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-Nin the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.
Bartsch, T., Molle, R., Rizzi, M., Verzini, G. (2021). Normalized solutions of mass supercritical Schrödinger equations with potential. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 46(9), 1729-1756 [10.1080/03605302.2021.1893747].
Normalized solutions of mass supercritical Schrödinger equations with potential
Molle, R
;
2021-01-01
Abstract
This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation-Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-Nin the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.File | Dimensione | Formato | |
---|---|---|---|
Bartsch_Molle_Riey_Verzini_2021_Comm_PDE.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
Bartsch_Molle_Riey_Verzini_2021_Comm_PDE.pdf
solo utenti autorizzati
Licenza:
Non specificato
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.