This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation-Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-Nin the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.

Bartsch, T., Molle, R., Rizzi, M., Verzini, G. (2021). Normalized solutions of mass supercritical Schrödinger equations with potential. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 46(9), 1729-1756 [10.1080/03605302.2021.1893747].

Normalized solutions of mass supercritical Schrödinger equations with potential

Molle, R
;
2021-01-01

Abstract

This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation-Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-Nin the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
nonlinear Schrödinger equations; normalized solution; min-max methods
This work was supported by the MIUR Excellence Department Project CUP E83C18000100006 (Roma Tor Vergata University) and by the INdAM-GNAMPA group. M.R. supported by the Alexander von Humboldt foundation.
http://arxiv.org/abs/2008.07431v1
Bartsch, T., Molle, R., Rizzi, M., Verzini, G. (2021). Normalized solutions of mass supercritical Schrödinger equations with potential. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 46(9), 1729-1756 [10.1080/03605302.2021.1893747].
Bartsch, T; Molle, R; Rizzi, M; Verzini, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Bartsch_Molle_Riey_Verzini_2021_Comm_PDE.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri
Bartsch_Molle_Riey_Verzini_2021_Comm_PDE.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/264612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 66
social impact