The paper deals with the equation $$-Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u = | u | p - 1 u , $$u in H^1({mathbb {R}}^N)$$ u ∈ H 1 ( R N ) , with $$Nge 2$$ N ≥ 2 , $$p> 1, p< {N+2over N-2}$$ p > 1 , p < N + 2 N - 2 if $$Nge 3$$ N ≥ 3 , $$ain L^{N/2}_{loc}({mathbb {R}}^N)$$ a ∈ L loc N / 2 ( R N ) , $$inf a> 0$$ inf a > 0 , $$lim _{|x| ightarrow infty } a(x)= a_infty $$ lim | x | → ∞ a ( x ) = a ∞ . Assuming that the potential a ( x ) satisfies $$lim _{|x| ightarrow infty }[a(x)-a_infty ] e^{eta |x|}= infty orall eta > 0$$ lim | x | → ∞ [ a ( x ) - a ∞ ] e η | x | = ∞ ∀ η > 0 , $$ lim _{ ho ightarrow infty } sup left{ a( ho heta _1) - a( ho heta _2) : heta _1, heta _2 in {mathbb {R}}^N, | heta _1|= | heta _2|=1 ight} e^{ ilde{eta } ho } = 0 quad ext{ for } ext{ some } ilde{eta }> 0$$ lim ρ → ∞ sup a ( ρ θ 1 ) - a ( ρ θ 2 ) : θ 1 , θ 2 ∈ R N , | θ 1 | = | θ 2 | = 1 e η ~ ρ = 0 for some η ~ > 0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a ( x ) has radial symmetry, or that $$N=2$$ N = 2 , or that $$|a(x)-a_infty |$$ | a ( x ) - a ∞ | is uniformly small in $${mathbb {R}}^N$$ R N , etc.

Molle, R., Passaseo, D. (2021). Infinitely many positive solutions of nonlinear Schrödinger equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 60(2) [10.1007/s00526-020-01905-3].

Infinitely many positive solutions of nonlinear Schrödinger equations

Riccardo Molle
;
2021-04-27

Abstract

The paper deals with the equation $$-Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u = | u | p - 1 u , $$u in H^1({mathbb {R}}^N)$$ u ∈ H 1 ( R N ) , with $$Nge 2$$ N ≥ 2 , $$p> 1, p< {N+2over N-2}$$ p > 1 , p < N + 2 N - 2 if $$Nge 3$$ N ≥ 3 , $$ain L^{N/2}_{loc}({mathbb {R}}^N)$$ a ∈ L loc N / 2 ( R N ) , $$inf a> 0$$ inf a > 0 , $$lim _{|x| ightarrow infty } a(x)= a_infty $$ lim | x | → ∞ a ( x ) = a ∞ . Assuming that the potential a ( x ) satisfies $$lim _{|x| ightarrow infty }[a(x)-a_infty ] e^{eta |x|}= infty orall eta > 0$$ lim | x | → ∞ [ a ( x ) - a ∞ ] e η | x | = ∞ ∀ η > 0 , $$ lim _{ ho ightarrow infty } sup left{ a( ho heta _1) - a( ho heta _2) : heta _1, heta _2 in {mathbb {R}}^N, | heta _1|= | heta _2|=1 ight} e^{ ilde{eta } ho } = 0 quad ext{ for } ext{ some } ilde{eta }> 0$$ lim ρ → ∞ sup a ( ρ θ 1 ) - a ( ρ θ 2 ) : θ 1 , θ 2 ∈ R N , | θ 1 | = | θ 2 | = 1 e η ~ ρ = 0 for some η ~ > 0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a ( x ) has radial symmetry, or that $$N=2$$ N = 2 , or that $$|a(x)-a_infty |$$ | a ( x ) - a ∞ | is uniformly small in $${mathbb {R}}^N$$ R N , etc.
27-apr-2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Nonlinear scalar field equations; infinitely many solutions; variational methods
This work is supported by ``Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)'' of the Istituto Nazionale di Alta Matematica (INdAM). The second author acknowledges also the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.
https://link.springer.com/article/10.1007/s00526-020-01905-3
Molle, R., Passaseo, D. (2021). Infinitely many positive solutions of nonlinear Schrödinger equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 60(2) [10.1007/s00526-020-01905-3].
Molle, R; Passaseo, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Molle_Passaseo_2021_Calc_Var.pdf

accesso aperto

Licenza: Creative commons
Dimensione 557.82 kB
Formato Adobe PDF
557.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/264594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact