WedevelopanelementarymethodtogiveaLipschitzestimateforthemin- imizers in the problem of Herglotz’ variational principle proposed in [17] in the time- dependent case. We deduce Erdmann’s condition and the Euler-Lagrange equation sep- arately under different sets of assumptions, by using a generalized du Bois-Reymond lemma. As an application, we obtain a representation formula for the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation Dtu(t, x) + H(t, x, Dxu(t, x), u(t, x)) = 0 and study the related Lax-Oleinik evolution.

Cannarsa, P., Cheng, W., Jin, L., Wang, K., Yan, J. (2020). Herglotz' variational principle and Lax-Oleinik evolution. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 141, 99-136 [10.1016/j.matpur.2020.07.002].

Herglotz' variational principle and Lax-Oleinik evolution

Cannarsa, Piermarco;
2020-01-01

Abstract

WedevelopanelementarymethodtogiveaLipschitzestimateforthemin- imizers in the problem of Herglotz’ variational principle proposed in [17] in the time- dependent case. We deduce Erdmann’s condition and the Euler-Lagrange equation sep- arately under different sets of assumptions, by using a generalized du Bois-Reymond lemma. As an application, we obtain a representation formula for the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation Dtu(t, x) + H(t, x, Dxu(t, x), u(t, x)) = 0 and study the related Lax-Oleinik evolution.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Cannarsa, P., Cheng, W., Jin, L., Wang, K., Yan, J. (2020). Herglotz' variational principle and Lax-Oleinik evolution. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 141, 99-136 [10.1016/j.matpur.2020.07.002].
Cannarsa, P; Cheng, W; Jin, L; Wang, K; Yan, J
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Rev_Herglotz_t_Ver2_20200222.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 401.98 kB
Formato Adobe PDF
401.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/263778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact