This work presents the results of a study on accelerated carbonation of incinerator air pollution control residues, with a particular focus on the modifications in the leaching behaviour of the ash. Aqueous carbonation experiments were carried out using 100% CO2 at different temperatures, pressures and liquid-to-solid ratios, in order to assess their influence on process kinetics, CO2 uptake and the leaching behaviour of major and trace elements. The ash showed a particularly high reactivity towards CO2, owing to the abundance of calcium hydroxides phases, with a maximum CO2 uptake of 250 g/kg. The main effects of carbonation on trace metal leaching involved a significant decrease in mobility for Pb, Zn and Cu at high pH values, a slight change or mobilization for Cr and Sb, and no major effects on the release of As and soluble salts. Geochemical modelling of leachates indicated solubility control by different minerals after carbonation. In particular, in the stability pH range of carbonates, solubility control by a number of metal carbonates was clearly suggested by modelling results. These findings indicate that accelerated carbonation of incinerator ashes has the potential to convert trace contaminants into sparingly soluble carbonate forms, with an overall positive effect on their leaching behaviour.

Baciocchi, R., Di Bartolomeo, B. (2009). The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues. WASTE MANAGEMENT, 29, 2994-3003 [10.1016/j.wasman.2009.07.012].

The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues

BACIOCCHI, RENATO;
2009-01-01

Abstract

This work presents the results of a study on accelerated carbonation of incinerator air pollution control residues, with a particular focus on the modifications in the leaching behaviour of the ash. Aqueous carbonation experiments were carried out using 100% CO2 at different temperatures, pressures and liquid-to-solid ratios, in order to assess their influence on process kinetics, CO2 uptake and the leaching behaviour of major and trace elements. The ash showed a particularly high reactivity towards CO2, owing to the abundance of calcium hydroxides phases, with a maximum CO2 uptake of 250 g/kg. The main effects of carbonation on trace metal leaching involved a significant decrease in mobility for Pb, Zn and Cu at high pH values, a slight change or mobilization for Cr and Sb, and no major effects on the release of As and soluble salts. Geochemical modelling of leachates indicated solubility control by different minerals after carbonation. In particular, in the stability pH range of carbonates, solubility control by a number of metal carbonates was clearly suggested by modelling results. These findings indicate that accelerated carbonation of incinerator ashes has the potential to convert trace contaminants into sparingly soluble carbonate forms, with an overall positive effect on their leaching behaviour.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore ING-IND/22 - SCIENZA E TECNOLOGIA DEI MATERIALI
Italian
Con Impact Factor ISI
Baciocchi, R., Di Bartolomeo, B. (2009). The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues. WASTE MANAGEMENT, 29, 2994-3003 [10.1016/j.wasman.2009.07.012].
Baciocchi, R; Di Bartolomeo, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
WM7397.pdf

solo utenti autorizzati

Dimensione 722.56 kB
Formato Adobe PDF
722.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/26350
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 78
social impact