We present a computationally efficient method to obtain the spectral function of bulk systems in the framework of steady-state density functional theory (i-DFT) using an idealized scanning tunneling microscope (STM) setup. We calculate the current through the STM tip and then extract the spectral function from the finite-bias differential conductance. The fictitious noninteracting system of i-DFT features an exchange-correlation (XC) contribution to the bias which guarantees the same current as in the true interacting system. Exact properties of the XC bias are established using Fermi-liquid theory and subsequently implemented to construct approximations for the Hubbard model. We show for two different lattice structures that the Mott metal-insulator transition is captured by i-DFT.

Jacob, D., Stefanucci, G., Kurth, S. (2020). Mott metal-insulator transition from steady-state density functional theory. PHYSICAL REVIEW LETTERS, 125(21) [10.1103/PhysRevLett.125.216401].

Mott metal-insulator transition from steady-state density functional theory

Stefanucci G;
2020-01-01

Abstract

We present a computationally efficient method to obtain the spectral function of bulk systems in the framework of steady-state density functional theory (i-DFT) using an idealized scanning tunneling microscope (STM) setup. We calculate the current through the STM tip and then extract the spectral function from the finite-bias differential conductance. The fictitious noninteracting system of i-DFT features an exchange-correlation (XC) contribution to the bias which guarantees the same current as in the true interacting system. Exact properties of the XC bias are established using Fermi-liquid theory and subsequently implemented to construct approximations for the Hubbard model. We show for two different lattice structures that the Mott metal-insulator transition is captured by i-DFT.
2020
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore FIS/03 - FISICA DELLA MATERIA
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
English
Con Impact Factor ISI
Band gap; Density of states; Electronic structure; Local density of states; Metal-insulator transition; Mott insulators; Strongly correlated systems; Density functional theory; Dynamical mean field theory; First-principles calculations; Hubbard model; Lattice models in condensed matter
Jacob, D., Stefanucci, G., Kurth, S. (2020). Mott metal-insulator transition from steady-state density functional theory. PHYSICAL REVIEW LETTERS, 125(21) [10.1103/PhysRevLett.125.216401].
Jacob, D; Stefanucci, G; Kurth, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PRL-125-216401-2020.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 495.49 kB
Formato Adobe PDF
495.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/263049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 9
social impact