We deal with nonlinear elliptic Dirichlet problems of the form $$ div(|D u|^{p-2}D u )+f(u)=0quadmbox{ in }Omega,qquad u=0 mbox{ on }partialOmega $$ where $Omega$ is a bounded domain in $R^n$, $nge 2$, $p> 1$ and $f$ has supercritical growth from the viewpoint of Sobolev embedding. o Our aim is to show that there exist bounded contractible non star-shaped domains $Omega$, arbitrarily close to domains with nontrivial topology, such that the problem does not have nontrivial solutions. For example, we prove that if $n=2$, $1<2$, $f(u)=|u|^{q-2}u$ with $q>{2pover 2-p}$ and $Omega={( hocos heta, hosin heta) : | heta|{2pover 2-p}$ there exists $ar s>0$ such that the problem has only the trivial solution $uequiv 0$ for all $alphain (0,pi)$ and $sin (0,ar s)$.

Molle, R., Passaseo, D. (2020). Nonexistence of solutions for elliptic equations with supercritical nonlinearity in nearly nontrivial domains. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 31(1), 121-130 [10.4171/RLM/882].

Nonexistence of solutions for elliptic equations with supercritical nonlinearity in nearly nontrivial domains

Molle R.
;
2020-01-01

Abstract

We deal with nonlinear elliptic Dirichlet problems of the form $$ div(|D u|^{p-2}D u )+f(u)=0quadmbox{ in }Omega,qquad u=0 mbox{ on }partialOmega $$ where $Omega$ is a bounded domain in $R^n$, $nge 2$, $p> 1$ and $f$ has supercritical growth from the viewpoint of Sobolev embedding. o Our aim is to show that there exist bounded contractible non star-shaped domains $Omega$, arbitrarily close to domains with nontrivial topology, such that the problem does not have nontrivial solutions. For example, we prove that if $n=2$, $1<2$, $f(u)=|u|^{q-2}u$ with $q>{2pover 2-p}$ and $Omega={( hocos heta, hosin heta) : | heta|{2pover 2-p}$ there exists $ar s>0$ such that the problem has only the trivial solution $uequiv 0$ for all $alphain (0,pi)$ and $sin (0,ar s)$.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Supercritical Dirichlet problems, contractible domains, nonexistence of solutions.
The authors have been supported by the ``Gruppo Nazionale per l'Analisi Matematica, la Probabilit`a e le loro Applicazioni (GNAMPA)'' of the {em Istituto Nazio-nale di Alta Matematica (INdAM)} - Project: Equazioni di Schrodinger nonlineari: soluzioni con indice di Morse alto o infinito. The second author acknowledges also the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.
Molle, R., Passaseo, D. (2020). Nonexistence of solutions for elliptic equations with supercritical nonlinearity in nearly nontrivial domains. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 31(1), 121-130 [10.4171/RLM/882].
Molle, R; Passaseo, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
p_Lap.pdf

solo utenti autorizzati

Descrizione: File spedito alla rivista
Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 332.31 kB
Formato Adobe PDF
332.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/262575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact