We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci et al. (2020) and Todino (2020), respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thäle (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence

Macci, C., Rossi, M., Todino, A. (2021). Moderate deviation estimates for nodal lengths of random spherical harmonics. ALEA, 18(1), 249-263 [10.30757/ALEA.v18-11].

Moderate deviation estimates for nodal lengths of random spherical harmonics

Macci C
;
2021-01-01

Abstract

We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci et al. (2020) and Todino (2020), respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thäle (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Macci, C., Rossi, M., Todino, A. (2021). Moderate deviation estimates for nodal lengths of random spherical harmonics. ALEA, 18(1), 249-263 [10.30757/ALEA.v18-11].
Macci, C; Rossi, M; Todino, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
MacciRossiTodinoALEA2021.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 528.25 kB
Formato Adobe PDF
528.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/261647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact