DNA nanodevices have been developed as platforms for the manipulation of gene expression, delivery of molecular payloads, and detection of various molecular targets within cells and in other complex biological settings. Despite efforts to translate DNA nanodevices from the test tube (in vitro) to living cells, their intracellular trafficking and functionality remain poorly understood. Herein, quantitative and super-resolution microscopy approaches were employed to track and visualise, with nanometric resolution, the molecular interactions between a synthetic DNA nanosensor and transcription factors in intracellular compartments. Specifically, fluorescence resonance energy transfer microscopy, fluorescence correlation spectroscopy, fluorescence lifetime imaging microscopy and multicolour single-molecule localisation microscopy were employed to probe the specific binding of the DNA nanosensor to the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B). We monitored the mobility, subcellular localisation and degradation of the DNA nanosensor inside living prostate cancer PC3 cells. Super-resolution imaging enabled the direct visualisation of the molecular interactions between the synthetic DNA nanosensors and the NF-kappa B molecules in cells. This study represents a significant advance in the effective detection as well as understanding of the intracellular dynamics of DNA nanosensors in a complex biological milieu.

Glab, A., Bertucci, A., Martino, F., Wojnilowicz, M., Amodio, A., Venanzi, M., et al. (2020). Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. NANOSCALE, 12(28), 15402-15413 [10.1039/d0nr03087b].

Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy

Venanzi, Mariano;Ricci, Francesco;Cavalieri, Francesca
2020-07-23

Abstract

DNA nanodevices have been developed as platforms for the manipulation of gene expression, delivery of molecular payloads, and detection of various molecular targets within cells and in other complex biological settings. Despite efforts to translate DNA nanodevices from the test tube (in vitro) to living cells, their intracellular trafficking and functionality remain poorly understood. Herein, quantitative and super-resolution microscopy approaches were employed to track and visualise, with nanometric resolution, the molecular interactions between a synthetic DNA nanosensor and transcription factors in intracellular compartments. Specifically, fluorescence resonance energy transfer microscopy, fluorescence correlation spectroscopy, fluorescence lifetime imaging microscopy and multicolour single-molecule localisation microscopy were employed to probe the specific binding of the DNA nanosensor to the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B). We monitored the mobility, subcellular localisation and degradation of the DNA nanosensor inside living prostate cancer PC3 cells. Super-resolution imaging enabled the direct visualisation of the molecular interactions between the synthetic DNA nanosensors and the NF-kappa B molecules in cells. This study represents a significant advance in the effective detection as well as understanding of the intracellular dynamics of DNA nanosensors in a complex biological milieu.
23-lug-2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/02 - CHIMICA FISICA
English
Con Impact Factor ISI
Marie Skłodowska-Curie 20. X. A. Wu, C. H. Choi, C. Zhang, L. Hao and C. A. Mirkin, J Am grant agreement No. 690901 (NANOSUPREMI
Glab, A., Bertucci, A., Martino, F., Wojnilowicz, M., Amodio, A., Venanzi, M., et al. (2020). Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. NANOSCALE, 12(28), 15402-15413 [10.1039/d0nr03087b].
Glab, A; Bertucci, A; Martino, F; Wojnilowicz, M; Amodio, A; Venanzi, M; Ricci, F; Forte, G; Caruso, F; Cavalieri, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
10.1039@d0nr03087b.pdf

solo utenti autorizzati

Descrizione: pdf preprint
Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/260538
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact