The introduction of paper-based platforms for developing novel energy storage devices such as supercapacitors (SCs) highlights new promising opportunities in the field of flexible electronics. Herein, the use of paper-based substrate has shown reduced manufacturing cost and simplified coating process by screen-printing technology, as well as an improvement of the multilayer structure adhesion. The SC manufactured with Graphite ink mixed with Carbon Black (CB)/Prussian blue (PB) at different weight ratios (0, 3, 4, 5, 7, and 10 wt %) shows good performances. An optimum weight ratio of carbon black/prussian blue. 4 wt % is consistent with the following features: i) specific capacitance of 253 mF/cm² at 0.01 V/s, ii) specific energy density of 0.5 mWh/cm², iii) specific power density of 0.1 mW/cm², and iv) good cycling stability (94%) after 5000 cycles. The proposed fabrication approach exhibits a simple scale-up, a low environmental impact and a decrease of manufacturing costs: it provides self-supporting electrodes based on a mixture of graphite ink and CB/PB nanocomposite.
Chebil, A., Mazzaracchio, V., Cinti, S., Arduini, F., Dridi, C. (2021). Facile development of cost effective and greener for all solid-state supercapacitor on paper substrate. JOURNAL OF ENERGY STORAGE, 33 [10.1016/j.est.2020.102107].
Facile development of cost effective and greener for all solid-state supercapacitor on paper substrate
Mazzaracchio V.;Cinti S.;Arduini F.;
2021-01-01
Abstract
The introduction of paper-based platforms for developing novel energy storage devices such as supercapacitors (SCs) highlights new promising opportunities in the field of flexible electronics. Herein, the use of paper-based substrate has shown reduced manufacturing cost and simplified coating process by screen-printing technology, as well as an improvement of the multilayer structure adhesion. The SC manufactured with Graphite ink mixed with Carbon Black (CB)/Prussian blue (PB) at different weight ratios (0, 3, 4, 5, 7, and 10 wt %) shows good performances. An optimum weight ratio of carbon black/prussian blue. 4 wt % is consistent with the following features: i) specific capacitance of 253 mF/cm² at 0.01 V/s, ii) specific energy density of 0.5 mWh/cm², iii) specific power density of 0.1 mW/cm², and iv) good cycling stability (94%) after 5000 cycles. The proposed fabrication approach exhibits a simple scale-up, a low environmental impact and a decrease of manufacturing costs: it provides self-supporting electrodes based on a mixture of graphite ink and CB/PB nanocomposite.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2352152X2031937X-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
5.4 MB
Formato
Adobe PDF
|
5.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.