We are concerned with the existence of blowing-up solutions to the following boundary value problem −Δu=λV(x)eu−4πNδ0 in Ω,u=0 on ∂Ω, where Ω is a smooth and bounded domain in R2 such that 0∈Ω, V is a positive smooth potential, N is a positive integer and λ>0 is a small parameter. Here δ0 defines the Dirac measure with pole at 0. We assume that Ωis (N+1) -symmetric and we find conditions on the potential Vand the domain Ω under which there exists a solution blowing up at N+1 points located at the vertices of a regular polygon with center 0.

D'Aprile, T. (2021). Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 20(1), 159-191 [10.3934/cpaa.2020262].

Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains

D'Aprile, Teresa
2021-01-01

Abstract

We are concerned with the existence of blowing-up solutions to the following boundary value problem −Δu=λV(x)eu−4πNδ0 in Ω,u=0 on ∂Ω, where Ω is a smooth and bounded domain in R2 such that 0∈Ω, V is a positive smooth potential, N is a positive integer and λ>0 is a small parameter. Here δ0 defines the Dirac measure with pole at 0. We assume that Ωis (N+1) -symmetric and we find conditions on the potential Vand the domain Ω under which there exists a solution blowing up at N+1 points located at the vertices of a regular polygon with center 0.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
The research of T. D’Aprile is partially supported by the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome “Tor Vergata”, CUP E83C18000100006, and by the group GNAMPA of INdAM Istituto Nazionale di Alta Matematica
D'Aprile, T. (2021). Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 20(1), 159-191 [10.3934/cpaa.2020262].
D'Aprile, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
7_Non_simple_blowup_4_270719_final.pdf

solo utenti autorizzati

Descrizione: articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/259898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact