We are concerned with the existence of blowing-up solutions to the following boundary value problem-Delta u = lambda e(u) - 4 pi N-lambda delta(0) in Omega, u = 0 on partial derivative Omegawhere Omega is a smooth and bounded domain in R-2 such that 0 is an element of Omega, N-lambda is a positive number close to an integer N (N >= 1) from the right side, delta(0 )defines the Dirac measure with pole at 0, and lambda > 0 is a small parameter. We assume that Omega is (N+1)-symmetric and the regular part of the Green's function satisfies a nondegeneracy condition (both assumptions are verified if Omega is the unit ball) and we find a solution which exhibits a non-simple blow-up profile as lambda -> 0(+). (C) 2020 Elsevier Inc. All rights reserved.
D'Aprile, T., & Wei, J. (2020). Bubbling solutions for the Liouville equation with a singular source: non-simple blow-up. JOURNAL OF FUNCTIONAL ANALYSIS, 279(6).
Tipologia: | Articolo su rivista | |
Citazione: | D'Aprile, T., & Wei, J. (2020). Bubbling solutions for the Liouville equation with a singular source: non-simple blow-up. JOURNAL OF FUNCTIONAL ANALYSIS, 279(6). | |
Lingua: | English | |
Settore Scientifico Disciplinare: | Settore MAT/05 | |
Revisione (peer review): | Esperti anonimi | |
Tipo: | Articolo | |
Rilevanza: | Rilevanza internazionale | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jfa.2020.108605 | |
Stato di pubblicazione: | Pubblicato | |
Data di pubblicazione: | 2020 | |
Titolo: | Bubbling solutions for the Liouville equation with a singular source: non-simple blow-up | |
Autori: | ||
Autori: | D'Aprile, T; Wei, J | |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
JFA_2020.pdf | articolo principale | Versione Editoriale (PDF) | Copyright dell'editore | Administrator Richiedi una copia |