Currently, big corpora, coming from Open Government Data projects, in several research areas, allow quickly to available a large number of documents. In the legal field, many information are stored and therefore made it necessary to develop a specific dictionary to classify text data. The paper aims to present the workflow to visualize and classify Big Legal Corpora, identifying the main steps of a chain process. The analyzed corpus is composed of 123,989 judgments, in Italian language, published by the Court of Audit, from 2010 to 2018.

Iezzi, D., Berte', R. (2020). Big Corpora and Text Clustering: The Italian Accounting Jurisdiction Case. In Text Analytics Advances and Challenges. SPRINGER.

Big Corpora and Text Clustering: The Italian Accounting Jurisdiction Case

IEZZI D.
;
BERTE' R.
2020-01-01

Abstract

Currently, big corpora, coming from Open Government Data projects, in several research areas, allow quickly to available a large number of documents. In the legal field, many information are stored and therefore made it necessary to develop a specific dictionary to classify text data. The paper aims to present the workflow to visualize and classify Big Legal Corpora, identifying the main steps of a chain process. The analyzed corpus is composed of 123,989 judgments, in Italian language, published by the Court of Audit, from 2010 to 2018.
2020
Settore SECS-S/05 - STATISTICA SOCIALE
English
Rilevanza internazionale
Capitolo o saggio
Iezzi, D., Berte', R. (2020). Big Corpora and Text Clustering: The Italian Accounting Jurisdiction Case. In Text Analytics Advances and Challenges. SPRINGER.
Iezzi, D; Berte', R
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
IEZZI, BERTE'.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 808.02 kB
Formato Adobe PDF
808.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/259095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact