We consider two bidimensional Ising models coupled by an interaction quartic in the spins, like in the spin representation of the Eight vertex or the Ashkin-Teller model. By Renormalization Group methods we write a convergent perturbative expansion for the specific heat and for the energy-energy correlation up to the critical temperature. A form of nonuniversality is proved, in the sense that the critical behaviour is described in terms of critical indices which are non trivial functions of the coupling. The logarithmic singularity of the specific heat of the Ising model is removed or changed in a power law (with a non universal critical index) depending on the sign of the interaction.
Mastropietro, V. (2004). Ising models with four spin interaction at criticality. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 244(3), 595-642 [10.1007/s00220-003-1008-0].
Ising models with four spin interaction at criticality
MASTROPIETRO, VIERI
2004-01-01
Abstract
We consider two bidimensional Ising models coupled by an interaction quartic in the spins, like in the spin representation of the Eight vertex or the Ashkin-Teller model. By Renormalization Group methods we write a convergent perturbative expansion for the specific heat and for the energy-energy correlation up to the critical temperature. A form of nonuniversality is proved, in the sense that the critical behaviour is described in terms of critical indices which are non trivial functions of the coupling. The logarithmic singularity of the specific heat of the Ising model is removed or changed in a power law (with a non universal critical index) depending on the sign of the interaction.File | Dimensione | Formato | |
---|---|---|---|
cmp3.pdf
solo utenti autorizzati
Dimensione
467.2 kB
Formato
Adobe PDF
|
467.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.