LetX= (X(t))(t >= 0)(X(0) = 0) be a continuous centered Gaussian process on a probability space (omega,F,P), and let (Y-t)(t is an element of)[0,1] (Y-0= 0) be a continuous process (on the same probability space) with nondecreasing paths, independent ofX. Define the time-changed Gaussian processZ(t)=X(Y-t),t is an element of [0,1]. In this paper, we investigate a problem of finite-dimensional large deviations and a problem of pathwise large deviations for time-changed continuous Gaussian processes. As applications, we considered subordinated Gaussian processes.

Pacchiarotti, B. (2020). Some large deviations principles for time-changed Gaussian processes. LITHUANIAN MATHEMATICAL JOURNAL, 60(4), 513-529 [10.1007/s10986-020-09494-6].

Some large deviations principles for time-changed Gaussian processes

Pacchiarotti, B
2020-11-01

Abstract

LetX= (X(t))(t >= 0)(X(0) = 0) be a continuous centered Gaussian process on a probability space (omega,F,P), and let (Y-t)(t is an element of)[0,1] (Y-0= 0) be a continuous process (on the same probability space) with nondecreasing paths, independent ofX. Define the time-changed Gaussian processZ(t)=X(Y-t),t is an element of [0,1]. In this paper, we investigate a problem of finite-dimensional large deviations and a problem of pathwise large deviations for time-changed continuous Gaussian processes. As applications, we considered subordinated Gaussian processes.
nov-2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
time-changed Gaussian processes
subordinated Gaussian processes
large deviations
Pacchiarotti, B. (2020). Some large deviations principles for time-changed Gaussian processes. LITHUANIAN MATHEMATICAL JOURNAL, 60(4), 513-529 [10.1007/s10986-020-09494-6].
Pacchiarotti, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2020PacchiarottiLithMathJ.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 323.89 kB
Formato Adobe PDF
323.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/257536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact