In algebraic quantum field theory the spacetime manifold is replaced by a suitable base for its topology ordered under inclusion. We explain how certain topological invariants of the manifold can be computed in terms of the base poset. We develop a theory of connections and curvature for bundles over posets in search of a formulation of gauge theories in algebraic quantum field theory. (c) 2008 Elsevier Inc. All rights reserved.

Roberts, J., Ruzzi, G., Vasselli, E. (2009). A theory of bundles over posets. ADVANCES IN MATHEMATICS, 220(1), 125-153 [10.1016/j.aim.2008.08.004].

A theory of bundles over posets

RUZZI, GIUSEPPE;
2009-01-01

Abstract

In algebraic quantum field theory the spacetime manifold is replaced by a suitable base for its topology ordered under inclusion. We explain how certain topological invariants of the manifold can be computed in terms of the base poset. We develop a theory of connections and curvature for bundles over posets in search of a formulation of gauge theories in algebraic quantum field theory. (c) 2008 Elsevier Inc. All rights reserved.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - Analisi Matematica
Settore MAT/07 - Fisica Matematica
English
Con Impact Factor ISI
Homotopy; Non-Abelian cohomology; Poset; Principal bundle
Roberts, J., Ruzzi, G., Vasselli, E. (2009). A theory of bundles over posets. ADVANCES IN MATHEMATICS, 220(1), 125-153 [10.1016/j.aim.2008.08.004].
Roberts, J; Ruzzi, G; Vasselli, E
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/25716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact