We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg-Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann-Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force. (C) 2016 Elsevier Inc. All rights reserved.

Morante, S., Rossi, G. (2017). A novel proof of the DFT formula for the interatomic force field of molecular dynamics. ANNALS OF PHYSICS, 377, 71-76 [10.1016/j.aop.2016.12.011].

A novel proof of the DFT formula for the interatomic force field of molecular dynamics

Morante, S
;
2017-01-01

Abstract

We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg-Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann-Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force. (C) 2016 Elsevier Inc. All rights reserved.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
DFT
atomic force field
functional legendre transform
Morante, S., Rossi, G. (2017). A novel proof of the DFT formula for the interatomic force field of molecular dynamics. ANNALS OF PHYSICS, 377, 71-76 [10.1016/j.aop.2016.12.011].
Morante, S; Rossi, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2017_Annals_of_Physics.pdf

solo utenti autorizzati

Descrizione: pdf
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 397.48 kB
Formato Adobe PDF
397.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/256948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact