We consider the minimal average action (Mather’s β function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the β-function associated to a standard-like twist map admits a unique C1- holomorphic (canonical) complex extension, which coincides with this function on the set of real diophantine frequencies. In particular, we deduce a uniqueness result for Mather’s β function.
Carminati, C., Marmi, S., Sauzin, D., Sorrentino, A. (2021). On the regularity of Mather's β-function for standard-like twist maps. ADVANCES IN MATHEMATICS, 377 [10.1016/j.aim.2020.107460].
On the regularity of Mather's β-function for standard-like twist maps
Sorrentino A.
2021-11-01
Abstract
We consider the minimal average action (Mather’s β function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the β-function associated to a standard-like twist map admits a unique C1- holomorphic (canonical) complex extension, which coincides with this function on the set of real diophantine frequencies. In particular, we deduce a uniqueness result for Mather’s β function.File | Dimensione | Formato | |
---|---|---|---|
CMSS_PublishedOnline.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.