We consider the minimal average action (Mather’s β function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the β-function associated to a standard-like twist map admits a unique C1- holomorphic (canonical) complex extension, which coincides with this function on the set of real diophantine frequencies. In particular, we deduce a uniqueness result for Mather’s β function.

Carminati, C., Marmi, S., Sauzin, D., Sorrentino, A. (2021). On the regularity of Mather's β-function for standard-like twist maps. ADVANCES IN MATHEMATICS, 377 [10.1016/j.aim.2020.107460].

On the regularity of Mather's β-function for standard-like twist maps

Sorrentino A.
2021-11-01

Abstract

We consider the minimal average action (Mather’s β function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the β-function associated to a standard-like twist map admits a unique C1- holomorphic (canonical) complex extension, which coincides with this function on the set of real diophantine frequencies. In particular, we deduce a uniqueness result for Mather’s β function.
nov-2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Carminati, C., Marmi, S., Sauzin, D., Sorrentino, A. (2021). On the regularity of Mather's β-function for standard-like twist maps. ADVANCES IN MATHEMATICS, 377 [10.1016/j.aim.2020.107460].
Carminati, C; Marmi, S; Sauzin, D; Sorrentino, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CMSS_PublishedOnline.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/256655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact