We are concerned with the mean field equation with singular data on bounded domains. By assuming a singular point to be a critical point of the 1-vortex Kirchhoff-Routh function, we prove local uniqueness and non-degeneracy of bubbling solutions blowing up at a singular point. The proof is based on sharp estimates for bubbling solutions of singular mean field equations and a suitably defined Pohozaev-type identity. (C) 2020 Elsevier Inc. All rights reserved.

Bartolucci, D., Jevnikar, A., Lee, Y., Yang, W. (2020). Local uniqueness and non-degeneracy of blow up solutions of mean field equations with singular data. JOURNAL OF DIFFERENTIAL EQUATIONS, 269(3), 2057-2090 [10.1016/j.jde.2020.01.030].

Local uniqueness and non-degeneracy of blow up solutions of mean field equations with singular data

Bartolucci, Daniele
Membro del Collaboration Group
;
2020-01-01

Abstract

We are concerned with the mean field equation with singular data on bounded domains. By assuming a singular point to be a critical point of the 1-vortex Kirchhoff-Routh function, we prove local uniqueness and non-degeneracy of bubbling solutions blowing up at a singular point. The proof is based on sharp estimates for bubbling solutions of singular mean field equations and a suitably defined Pohozaev-type identity. (C) 2020 Elsevier Inc. All rights reserved.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
mean field equations
uniqueness
non-degeneracy
blow up solutions
singular data
D. Bartolucci is partially supported by MIUR Excellence Department Project awarded to the Department of Mathematics, Univ. of Rome Tor Vergata, CUP E83C18000100006.
Bartolucci, D., Jevnikar, A., Lee, Y., Yang, W. (2020). Local uniqueness and non-degeneracy of blow up solutions of mean field equations with singular data. JOURNAL OF DIFFERENTIAL EQUATIONS, 269(3), 2057-2090 [10.1016/j.jde.2020.01.030].
Bartolucci, D; Jevnikar, A; Lee, Y; Yang, W
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BJLY4 arXiv 1905.11749.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 297.63 kB
Formato Adobe PDF
297.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/256329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact