This paper provides a selection of the last two decades publications on the development and application of chemical sensors based on piezoelectric quartz resonators for a wide range of analytical tasks. Most of the attention is devoted to an analysis of gas and liquid media and to industrial processes controls utilizing single quartz crystal microbalance (QCM) sensors, bulk acoustic wave (BAW) sensors, and their arrays in e-nose systems. The unique opportunity to estimate several heavy metals in natural and wastewater samples from the output of a QCM sensor array highly sensitive to changes in metal ion activity in water vapor is shown. The high potential of QCM multisensor systems for fast and cost-effective water contamination assessments "in situ" without sample pretreatment is demonstrated.
Kuchmenko, T., Lvova, L. (2019). A Perspective on recent advances in piezoelectric chemical sensors for environmental monitoring and foodstuffs analysis. CHEMOSENSORS, 7(3), 39 [10.3390/chemosensors7030039].
A Perspective on recent advances in piezoelectric chemical sensors for environmental monitoring and foodstuffs analysis
Lvova, L
2019-01-01
Abstract
This paper provides a selection of the last two decades publications on the development and application of chemical sensors based on piezoelectric quartz resonators for a wide range of analytical tasks. Most of the attention is devoted to an analysis of gas and liquid media and to industrial processes controls utilizing single quartz crystal microbalance (QCM) sensors, bulk acoustic wave (BAW) sensors, and their arrays in e-nose systems. The unique opportunity to estimate several heavy metals in natural and wastewater samples from the output of a QCM sensor array highly sensitive to changes in metal ion activity in water vapor is shown. The high potential of QCM multisensor systems for fast and cost-effective water contamination assessments "in situ" without sample pretreatment is demonstrated.File | Dimensione | Formato | |
---|---|---|---|
A Perspective on Recent Advances in Piezoelectric Chemical Sensors for Environmental Monitoring and Foodstuffs Analysis_2019.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.