This note is commenting on Hasbrouck (2018). The paper investigates the problem of price discovery on markets with trades recorded at sub-millisecond frequencies. The application of the popular information share measure of Hasbrouck (1995) to such data faces several difficulties, as the underlying vector error correction models would need a huge number of lags to capture dynamics at different time-scales. The problem is handled by imposing a set of restrictions on parameters inspired by the Heterogeneous Autoregressive model for realized volatility. We illustrate some potential drawbacks of the information share measure adopted in the paper and propose a modeling strategy aimed at dealing with such limitations. In particular, we introduce a structural multi-market model with a lagged adjustment mechanism describing lagged absorption of information across markets. The advantages of the method are shown in simulations.

Buccheri, G., Bormetti, G., Corsi, F., Lillo, F. (2019). Comment on: Price Discovery in High Resolution. JOURNAL OF FINANCIAL ECONOMETRICS [10.1093/jjfinec/nbz008].

Comment on: Price Discovery in High Resolution

Buccheri, Giuseppe;
2019-01-01

Abstract

This note is commenting on Hasbrouck (2018). The paper investigates the problem of price discovery on markets with trades recorded at sub-millisecond frequencies. The application of the popular information share measure of Hasbrouck (1995) to such data faces several difficulties, as the underlying vector error correction models would need a huge number of lags to capture dynamics at different time-scales. The problem is handled by imposing a set of restrictions on parameters inspired by the Heterogeneous Autoregressive model for realized volatility. We illustrate some potential drawbacks of the information share measure adopted in the paper and propose a modeling strategy aimed at dealing with such limitations. In particular, we introduce a structural multi-market model with a lagged adjustment mechanism describing lagged absorption of information across markets. The advantages of the method are shown in simulations.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE
Settore SECS-P/05 - ECONOMETRIA
Settore SECS-S/03 - STATISTICA ECONOMICA
English
high-resolution; high-frequency trading; information share; HAR; lagged-adjustment
Buccheri, G., Bormetti, G., Corsi, F., Lillo, F. (2019). Comment on: Price Discovery in High Resolution. JOURNAL OF FINANCIAL ECONOMETRICS [10.1093/jjfinec/nbz008].
Buccheri, G; Bormetti, G; Corsi, F; Lillo, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
buccheri2019.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 302.16 kB
Formato Adobe PDF
302.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
buccheri2019jfecCid.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 771.78 kB
Formato Adobe PDF
771.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/253279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact