Given a completely rational conformal net A on the circle, its fusion ring acts faithfully on the K_0-group of a certain universal C*-algebra associated to A, as shown in a previous paper. We prove here that this action can actually be identified with a Kasparov product, thus paving the way for a fruitful interplay between conformal field theory and KK-theory.

Carpi, S., Conti, R., Hillier, R. (2013). Conformal nets and KK-theory. ANNALS OF FUNCTIONAL ANALYSIS, 4(1), 11-17 [10.15352/afa/1399899832].

Conformal nets and KK-theory

Carpi, S;
2013-01-01

Abstract

Given a completely rational conformal net A on the circle, its fusion ring acts faithfully on the K_0-group of a certain universal C*-algebra associated to A, as shown in a previous paper. We prove here that this action can actually be identified with a Kasparov product, thus paving the way for a fruitful interplay between conformal field theory and KK-theory.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
http://www.emis.de/journals/AFA/AFA-tex_v4_n1_a2.pdf
Carpi, S., Conti, R., Hillier, R. (2013). Conformal nets and KK-theory. ANNALS OF FUNCTIONAL ANALYSIS, 4(1), 11-17 [10.15352/afa/1399899832].
Carpi, S; Conti, R; Hillier, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1205.6393.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 124.29 kB
Formato Adobe PDF
124.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/252737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact