We non-perturbatively determine the renormalization constant and the improvement coefficients relating the renormalized current and subtracted quark mass of (quenched) valence quarks propagating in a sea of O(a) improved two massless quarks. We employ the Schrodinger functional scheme and fix the physical extent of the box by working at a constant value of the renormalized coupling. Our calculation yields results which cover two regions of bare parameter space. One is the weak-coupling region suitable for volumes of about half a fermi. By making simulations in this region, quarks as heavy as the bottom can be propagated with the full relativistic QCD action and renormalization problems in HQET can be solved non-perturbatively by a matching to QCD in finite volume. The other region refers to the common parameter range in large-volume simulations of two-flavour lattice QCD, where our results have particular relevance for charm physics applications.
Fritzsch, P., Heitger, J., Tantalo, N. (2010). Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD. JOURNAL OF HIGH ENERGY PHYSICS(8) [10.1007/JHEP08(2010)074].
Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD
TANTALO, NAZZARIO
2010-01-01
Abstract
We non-perturbatively determine the renormalization constant and the improvement coefficients relating the renormalized current and subtracted quark mass of (quenched) valence quarks propagating in a sea of O(a) improved two massless quarks. We employ the Schrodinger functional scheme and fix the physical extent of the box by working at a constant value of the renormalized coupling. Our calculation yields results which cover two regions of bare parameter space. One is the weak-coupling region suitable for volumes of about half a fermi. By making simulations in this region, quarks as heavy as the bottom can be propagated with the full relativistic QCD action and renormalization problems in HQET can be solved non-perturbatively by a matching to QCD in finite volume. The other region refers to the common parameter range in large-volume simulations of two-flavour lattice QCD, where our results have particular relevance for charm physics applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.