The muon detector of LHCb, which comprises 1368 multi-wire-proportional-chambers (MWPC) for a total area of 435 m(2), is the largest instrument of its kind exposed to such a high-radiation environment. In nine years of operation, from 2010 until 2018, we did not observe appreciable signs of ageing of the detector in terms of reduced performance. However, during such a long period, many chamber gas gaps suffered from HV trips. Most of the trips were due to Malter-like effects, characterised by the appearance of local self-sustained high currents, presumably originating from impurities induced during chamber production. Very effective, though long, recovery procedures were implemented with a HV training of the gaps in situ while taking data. The training allowed most of the affected chambers to be returned to their full functionality and the muon detector efficiency to be kept close to 100%. The possibility of making the recovery faster and even more effective by adding a small percentage of oxygen in the gas mixture has been studied and successfully tested.

Albicocco, F.p., Anderlini, L., Anelli, M., Archilli, F., Auriemma, G., Baldini, W., et al. (2019). Long-term operation of the multi-wire-proportional-chambers of the LHCb muon system. JOURNAL OF INSTRUMENTATION, 14 [10.1088/1748-0221/14/11/P11031].

Long-term operation of the multi-wire-proportional-chambers of the LHCb muon system

Archilli, F.;Santovetti, E.
Membro del Collaboration Group
;
2019-01-01

Abstract

The muon detector of LHCb, which comprises 1368 multi-wire-proportional-chambers (MWPC) for a total area of 435 m(2), is the largest instrument of its kind exposed to such a high-radiation environment. In nine years of operation, from 2010 until 2018, we did not observe appreciable signs of ageing of the detector in terms of reduced performance. However, during such a long period, many chamber gas gaps suffered from HV trips. Most of the trips were due to Malter-like effects, characterised by the appearance of local self-sustained high currents, presumably originating from impurities induced during chamber production. Very effective, though long, recovery procedures were implemented with a HV training of the gaps in situ while taking data. The training allowed most of the affected chambers to be returned to their full functionality and the muon detector efficiency to be kept close to 100%. The possibility of making the recovery faster and even more effective by adding a small percentage of oxygen in the gas mixture has been studied and successfully tested.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/01 - FISICA SPERIMENTALE
English
Gaseous detectors; Wire chambers (MWPC, Thin-gap chambers, drift; chambers, drift tubes, proportional chambers etc); Charge transport; multiplication in gas; MWPCS; MODEL
Albicocco, F.p., Anderlini, L., Anelli, M., Archilli, F., Auriemma, G., Baldini, W., et al. (2019). Long-term operation of the multi-wire-proportional-chambers of the LHCb muon system. JOURNAL OF INSTRUMENTATION, 14 [10.1088/1748-0221/14/11/P11031].
Albicocco, Fp; Anderlini, L; Anelli, M; Archilli, F; Auriemma, G; Baldini, W; Bencivenni, G; Bondar, N; Bochin, B; Brundu, D; Cadeddu, S; Campana, P; Carboni, G; Cardini, A; Carletti, M; Casu, L; Chubykin, A; Ciambrone, P; Dane, E; De Simone, P; Fontana, M; Fresch, P; Gatta, M; Gavrilov, G; Gets, S; Graziani, G; Kashchuk, A; Korolev, M; Kotriakhova, S; Kuznetsova, E; Lai, A; Levitskaya, O; Loi, A; Maev, O; Maysuzenko, D; Martellotti, G; Nasybulin, S; Neustroev, P; Oldeman, Rgc; Palutan, M; Passaleva, G; Penso, G; Pinci, D; Santacesaria, R; Santimaria, M; Santovetti, E; Saitta, B; Saputi, A; Sarti, A; Satriano, C; Satta, A; Schmidt, B; Schneider, T; Sciascia, B; Sciubba, A; Vazquez-Gomez, R; Vecchi, S; Vorobyev, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Albicocco_2019_J._Inst._14_P11031.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/250823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact