DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release. (C) 2018 Published by Elsevier B.V.
Rossetti, M., Porchetta, A. (2018). Allosterically regulated DNA-based switches: From design to bioanalytical applications. ANALYTICA CHIMICA ACTA, 1012, 30-41 [10.1016/j.aca.2017.12.046].
Allosterically regulated DNA-based switches: From design to bioanalytical applications
Rossetti M.;Porchetta A.
2018-01-01
Abstract
DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release. (C) 2018 Published by Elsevier B.V.File | Dimensione | Formato | |
---|---|---|---|
Review.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.