Alkylarylalkynes are converted with full regioselectivity into the corresponding arylketones by formal hydration of the triple bond under weak acidic conditions, at times and temperatures (<= 95 degrees C) comparable to those used for terminal alkynes. The process catalyzed by Fe-2(SO4)(3)nH(2)O in glacial acetic acid exhibits good functional group compatibility, including that with bulky triple bond substituents, and can be extended to the one-pot transformation of aryltrimethylsilylacetylenes into acetyl derivatives via a desilylation-hydration sequence. The overall reactivity pattern along with proton affinity data indicate that the triple bond is activated by proton transfer rather than by pi-interaction with the metal ion. This mechanistic feature, at variance with that of noble metal catalysts, accounts for the total regioselectivity and the insensitivity to steric hindrance exhibited by the Fe-2(SO4)(3)nH(2)O/AcOH catalytic system.
Antenucci, A., Flamini, P., Fornaiolo, M.v., Di Silvio, S., Mazzetti, S., Mencarelli, P., et al. (2019). Iron(III)-Catalyzed Hydration of Unactivated Internal Alkynes in Weak Acidic Medium, under Lewis Acid-Assisted Brønsted Acid Catalysis. ADVANCED SYNTHESIS & CATALYSIS, 361(19), 4517-4526 [10.1002/adsc.201900633].
Iron(III)-Catalyzed Hydration of Unactivated Internal Alkynes in Weak Acidic Medium, under Lewis Acid-Assisted Brønsted Acid Catalysis
Salvio R.;
2019-08-16
Abstract
Alkylarylalkynes are converted with full regioselectivity into the corresponding arylketones by formal hydration of the triple bond under weak acidic conditions, at times and temperatures (<= 95 degrees C) comparable to those used for terminal alkynes. The process catalyzed by Fe-2(SO4)(3)nH(2)O in glacial acetic acid exhibits good functional group compatibility, including that with bulky triple bond substituents, and can be extended to the one-pot transformation of aryltrimethylsilylacetylenes into acetyl derivatives via a desilylation-hydration sequence. The overall reactivity pattern along with proton affinity data indicate that the triple bond is activated by proton transfer rather than by pi-interaction with the metal ion. This mechanistic feature, at variance with that of noble metal catalysts, accounts for the total regioselectivity and the insensitivity to steric hindrance exhibited by the Fe-2(SO4)(3)nH(2)O/AcOH catalytic system.File | Dimensione | Formato | |
---|---|---|---|
Antenucci_et_al-2019-Advanced_Synthesis_&_Catalysis.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.77 MB
Formato
Adobe PDF
|
1.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.