Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers’ intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.

Wang, M., Ceccarelli, M. (2015). Topology search of 3-DOF translational parallel manipulators with three identical limbs for leg mechanisms. CHINESE JOURNAL OF MECHANICAL ENGINEERING, 28(4), 666-675 [10.3901/CJME.2015.0408.060].

Topology search of 3-DOF translational parallel manipulators with three identical limbs for leg mechanisms

CECCARELLI, Marco
2015-01-01

Abstract

Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers’ intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/13 - MECCANICA APPLICATA ALLE MACCHINE
English
Con Impact Factor ISI
topology search; 3-DOF translational parallel manipulators(TPMs); creative design; leg mechanisms
Wang, M., Ceccarelli, M. (2015). Topology search of 3-DOF translational parallel manipulators with three identical limbs for leg mechanisms. CHINESE JOURNAL OF MECHANICAL ENGINEERING, 28(4), 666-675 [10.3901/CJME.2015.0408.060].
Wang, M; Ceccarelli, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/247633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact