We construct a parallel stochastic dynamics with invariant measure converging to the Gibbs measure of the 2-d low-temperature Ising model. The proof of such convergence requires a polymer expansion based on suitably defined Peierls-type contours.
Procacci, A., Scoppola, B., Scoppola, E. (2016). Probabilistic Cellular Automata for Low-Temperature 2-d Ising Model. JOURNAL OF STATISTICAL PHYSICS, 165(6), 991-1005 [10.1007/s10955-016-1661-2].
Probabilistic Cellular Automata for Low-Temperature 2-d Ising Model
Scoppola B.;
2016-01-01
Abstract
We construct a parallel stochastic dynamics with invariant measure converging to the Gibbs measure of the 2-d low-temperature Ising model. The proof of such convergence requires a polymer expansion based on suitably defined Peierls-type contours.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.