We construct a parallel stochastic dynamics with invariant measure converging to the Gibbs measure of the 2-d low-temperature Ising model. The proof of such convergence requires a polymer expansion based on suitably defined Peierls-type contours.

Procacci, A., Scoppola, B., Scoppola, E. (2016). Probabilistic Cellular Automata for Low-Temperature 2-d Ising Model. JOURNAL OF STATISTICAL PHYSICS, 165(6), 991-1005 [10.1007/s10955-016-1661-2].

Probabilistic Cellular Automata for Low-Temperature 2-d Ising Model

Scoppola B.;
2016-01-01

Abstract

We construct a parallel stochastic dynamics with invariant measure converging to the Gibbs measure of the 2-d low-temperature Ising model. The proof of such convergence requires a polymer expansion based on suitably defined Peierls-type contours.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Ising model; Probabilistic celluar automata; MCMC
Procacci, A., Scoppola, B., Scoppola, E. (2016). Probabilistic Cellular Automata for Low-Temperature 2-d Ising Model. JOURNAL OF STATISTICAL PHYSICS, 165(6), 991-1005 [10.1007/s10955-016-1661-2].
Procacci, A; Scoppola, B; Scoppola, E
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/246315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
social impact