This paper presents a novel on-chip antenna using standard CMOS-technology based on metasurface implemented on two-layers polyimide substrates with a thickness of 500 μm. The aluminium ground-plane with thickness of 3 μm is sandwiched between the two-layers. Concentric dielectric-rings are etched in the ground-plane under the radiation patches implemented on the top-layer. The radiation patches comprise concentric metal-rings that are arranged in a 3 × 3 matrix. The antennas are excited by coupling electromagnetic energy through the gaps of the concentric dielectric-rings in the ground-plane using a microstrip feedline created on the bottom polyimide-layer. The open-ended feedline is split in three-branches that are aligned under the radiation elements to couple the maximum energy. In this structure, the concentric metal-rings essentially act as series left-handed capacitances CL that extend the effective aperture area of the antenna without affecting its dimensions, and the concentric dielectric rings etched in the ground-plane act as shunt left-handed inductors LL, which suppress the surface-waves and reduce the substrates losses that leads to improved bandwidth and radiation properties. The overall structure behaves like a metasurface that is shown to exhibit a very large bandwidth of 0.350-0.385 THz with an average radiation gain and efficiency of 8.15dBi and 65.71%, respectively. It has dimensions of 6 × 6 × 1 mm3 that makes it suitable for on-chip implementation.

Alibakhshikenari, M., Virdee, B.s., See, C.h., Abd-Alhameed, R.a., Falcone, F., Limiti, E. (2020). High-Gain Metasurface in Polyimide On-Chip Antenna Based on CRLH-TL for Sub-Terahertz Integrated Circuits. SCIENTIFIC REPORTS, 10(1), 4298 [10.1038/s41598-020-61099-8].

High-Gain Metasurface in Polyimide On-Chip Antenna Based on CRLH-TL for Sub-Terahertz Integrated Circuits

Limiti E.
2020-03-01

Abstract

This paper presents a novel on-chip antenna using standard CMOS-technology based on metasurface implemented on two-layers polyimide substrates with a thickness of 500 μm. The aluminium ground-plane with thickness of 3 μm is sandwiched between the two-layers. Concentric dielectric-rings are etched in the ground-plane under the radiation patches implemented on the top-layer. The radiation patches comprise concentric metal-rings that are arranged in a 3 × 3 matrix. The antennas are excited by coupling electromagnetic energy through the gaps of the concentric dielectric-rings in the ground-plane using a microstrip feedline created on the bottom polyimide-layer. The open-ended feedline is split in three-branches that are aligned under the radiation elements to couple the maximum energy. In this structure, the concentric metal-rings essentially act as series left-handed capacitances CL that extend the effective aperture area of the antenna without affecting its dimensions, and the concentric dielectric rings etched in the ground-plane act as shunt left-handed inductors LL, which suppress the surface-waves and reduce the substrates losses that leads to improved bandwidth and radiation properties. The overall structure behaves like a metasurface that is shown to exhibit a very large bandwidth of 0.350-0.385 THz with an average radiation gain and efficiency of 8.15dBi and 65.71%, respectively. It has dimensions of 6 × 6 × 1 mm3 that makes it suitable for on-chip implementation.
mar-2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - ELETTRONICA
English
Con Impact Factor ISI
Electrical and electronic engineering, Electronic devices
https://www.nature.com/articles/s41598-020-61099-8
Alibakhshikenari, M., Virdee, B.s., See, C.h., Abd-Alhameed, R.a., Falcone, F., Limiti, E. (2020). High-Gain Metasurface in Polyimide On-Chip Antenna Based on CRLH-TL for Sub-Terahertz Integrated Circuits. SCIENTIFIC REPORTS, 10(1), 4298 [10.1038/s41598-020-61099-8].
Alibakhshikenari, M; Virdee, Bs; See, Ch; Abd-Alhameed, Ra; Falcone, F; Limiti, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
High-Gain Metasurface in Polyimide On-Chip Antenna Based on CRLH-TL for Sub-Terahertz Integrated Circuits.pdf

accesso aperto

Descrizione: Articolo completo
Licenza: Non specificato
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/245399
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 79
social impact