In this paper we construct an abstract Fock space for general Lie types that serves as a generalization of the infinite wedge q-Fock space familiar in type A. Specifically, for each positive integer l, we define a Z[q, q(-1)]-module F-l with bar involution by specifying generators and straightening relations adapted from those appearing in the Kashiwara-Miwa-Stern formulation of the q-Fock space. By relating F-l to the corresponding affine Hecke algebra, we show that the abstract Fock space has standard and canonical bases for which the transition matrix produces parabolic affine Kazhdan-Lusztig polynomials. This property and the convenient combinatorial labeling of bases of F-l by dominant integral weights makes F-l a useful combinatorial tool for determining decomposition numbers of Weyl modules for quantum groups at roots of unity.

Lanini, M., Ram, A., Sobaje, P. (2019). A Fock space model for decomposition numbers for quantum groups at roots of unity. KYOTO JOURNAL OF MATHEMATICS, 59(4), 955-991 [10.1215/21562261-2019-0031].

A Fock space model for decomposition numbers for quantum groups at roots of unity

Lanini M.
;
2019-01-01

Abstract

In this paper we construct an abstract Fock space for general Lie types that serves as a generalization of the infinite wedge q-Fock space familiar in type A. Specifically, for each positive integer l, we define a Z[q, q(-1)]-module F-l with bar involution by specifying generators and straightening relations adapted from those appearing in the Kashiwara-Miwa-Stern formulation of the q-Fock space. By relating F-l to the corresponding affine Hecke algebra, we show that the abstract Fock space has standard and canonical bases for which the transition matrix produces parabolic affine Kazhdan-Lusztig polynomials. This property and the convenient combinatorial labeling of bases of F-l by dominant integral weights makes F-l a useful combinatorial tool for determining decomposition numbers of Weyl modules for quantum groups at roots of unity.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Lanini, M., Ram, A., Sobaje, P. (2019). A Fock space model for decomposition numbers for quantum groups at roots of unity. KYOTO JOURNAL OF MATHEMATICS, 59(4), 955-991 [10.1215/21562261-2019-0031].
Lanini, M; Ram, A; Sobaje, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
FockSpace_FinalVersion.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/242847
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact