Cystinosis is a rare lysosomal storage disorder caused by loss-of-function mutations of the CTNS gene, encoding cystinosin, a symporter that mediates cystine efflux from lysosomes. Approximately 95% of patients with cystinosis display renal Fanconi syndrome, short stature, osteopenia, and rickets. In this study, we investigated whether the absence of cystinosin primarily affects bone remodeling activity, apart from the influences of the Fanconi syndrome on bone mineral metabolism. Using micro-computed tomography and histomorphometric and bone serum biomarker analysis, we evaluated the bone phenotype of 1-month-old Ctns-/- knockout (KO) male mice without tubulopathy. An in vitro study was performed to characterize the effects of cystinosin deficiency on osteoblasts and osteoclasts. Micro-computed tomography analysis showed a reduction of trabecular bone volume, bone mineral density, and number and thickness in KO mice compared with wild-type animals; histomorphometric analysis revealed a reduction of osteoblast and osteoclast parameters in tibiae of cystinotic mice. Decreased levels of serum procollagen type 1 amino-terminal propeptide and tartrate-resistant acid phosphatase in KO mice confirmed reduced bone remodeling activity. In vitro experiments showed an impairment of Ctns-/- osteoblasts and osteoclasts. In conclusion, cystinosin deficiency primarily affects bone cells, leading to a bone loss phenotype of KO mice, independent from renal failure.

Porzio, O. (2019). Intrinsic Bone Defects in Cystinotic Mice. THE AMERICAN JOURNAL OF PATHOLOGY, 189(5), 1053-1064.

Intrinsic Bone Defects in Cystinotic Mice.

Porzio Ottavia
2019-01-01

Abstract

Cystinosis is a rare lysosomal storage disorder caused by loss-of-function mutations of the CTNS gene, encoding cystinosin, a symporter that mediates cystine efflux from lysosomes. Approximately 95% of patients with cystinosis display renal Fanconi syndrome, short stature, osteopenia, and rickets. In this study, we investigated whether the absence of cystinosin primarily affects bone remodeling activity, apart from the influences of the Fanconi syndrome on bone mineral metabolism. Using micro-computed tomography and histomorphometric and bone serum biomarker analysis, we evaluated the bone phenotype of 1-month-old Ctns-/- knockout (KO) male mice without tubulopathy. An in vitro study was performed to characterize the effects of cystinosin deficiency on osteoblasts and osteoclasts. Micro-computed tomography analysis showed a reduction of trabecular bone volume, bone mineral density, and number and thickness in KO mice compared with wild-type animals; histomorphometric analysis revealed a reduction of osteoblast and osteoclast parameters in tibiae of cystinotic mice. Decreased levels of serum procollagen type 1 amino-terminal propeptide and tartrate-resistant acid phosphatase in KO mice confirmed reduced bone remodeling activity. In vitro experiments showed an impairment of Ctns-/- osteoblasts and osteoclasts. In conclusion, cystinosin deficiency primarily affects bone cells, leading to a bone loss phenotype of KO mice, independent from renal failure.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/12 - BIOCHIMICA CLINICA E BIOLOGIA MOLECOLARE CLINICA
Settore MED/14 - NEFROLOGIA
English
Porzio, O. (2019). Intrinsic Bone Defects in Cystinotic Mice. THE AMERICAN JOURNAL OF PATHOLOGY, 189(5), 1053-1064.
Porzio, O
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Am Journ Path 2019.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/241956
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact