Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.

Gargioli, C., Turturici, G., Barreca, M.m., Spinello, W., Fuoco, C., Testa, S., et al. (2018). Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo. CELL DEATH & DISEASE, 9(1), 1 [10.1038/s41419-017-0012-9].

Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo

Gargioli, Cesare;Fuoco, Claudia;Testa, Stefano;
2018-01-03

Abstract

Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.
3-gen-2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/13 - BIOLOGIA APPLICATA
English
Animals; Cell Cycle Checkpoints; Cell Differentiation; Cell Line; Cell Movement; Cell Survival; Hydrogen Peroxide; Matrix Metalloproteinase 2; Mice; Mice, SCID; Muscle, Skeletal; Muscular Dystrophy, Animal; Oxidative Stress; Protein Isoforms; Reactive Oxygen Species; Sarcoglycans; Stem Cell Transplantation; Stem Cells; p38 Mitogen-Activated Protein Kinases
Gargioli, C., Turturici, G., Barreca, M.m., Spinello, W., Fuoco, C., Testa, S., et al. (2018). Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vitro and in vivo. CELL DEATH & DISEASE, 9(1), 1 [10.1038/s41419-017-0012-9].
Gargioli, C; Turturici, G; Barreca, Mm; Spinello, W; Fuoco, C; Testa, S; Feo, S; Cannata, Sm; Cossu, G; Sconzo, G; Geraci, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Gargioli et al Cell_Death_&_Disease.pdf

accesso aperto

Licenza: Creative commons
Dimensione 5.18 MB
Formato Adobe PDF
5.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/241644
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact