Polymeric resins are widely used for dental reconstruction, and most resins use camphorquinone as activator of the polymerization reaction, through the absorption of light at a defined wavelength range (from 400 nm to 460 nm). During the photopolymerization curing, transparency of these resins changes and transmittance variation can be detected by photodiode and bolometer measurements. This change can be used as an index of the reaction rate, and the kinetic parameter k (reaction rate) can be evaluated from transmittance data by means of nonlinear regression. The relation between k and the light intensity impinging on the resin sample can thus be obtained. In the present work, tests were carried out using the resin Enamel Plus HFO GE2. Results reveal the presence of two different polymerization reactions at two different intensity ranges. The obtained k values were used to predict the most suited curing times for different light intensities. The proposed methodology can be applied to different dental reconstruction materials, provided that the material is partially transparent and that its transparency changes during the polymerization reaction.
Bovesecchi, G., Coppa, P., Armellin, E., Cerroni, L. (2018). Evaluation of Photopolymerization Kinetics by Means of Transmittance Measurements. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 39(4) [10.1007/s10765-018-2380-5].
Evaluation of Photopolymerization Kinetics by Means of Transmittance Measurements
Bovesecchi G.;Coppa P.;Armellin E.;Cerroni L.
2018-01-01
Abstract
Polymeric resins are widely used for dental reconstruction, and most resins use camphorquinone as activator of the polymerization reaction, through the absorption of light at a defined wavelength range (from 400 nm to 460 nm). During the photopolymerization curing, transparency of these resins changes and transmittance variation can be detected by photodiode and bolometer measurements. This change can be used as an index of the reaction rate, and the kinetic parameter k (reaction rate) can be evaluated from transmittance data by means of nonlinear regression. The relation between k and the light intensity impinging on the resin sample can thus be obtained. In the present work, tests were carried out using the resin Enamel Plus HFO GE2. Results reveal the presence of two different polymerization reactions at two different intensity ranges. The obtained k values were used to predict the most suited curing times for different light intensities. The proposed methodology can be applied to different dental reconstruction materials, provided that the material is partially transparent and that its transparency changes during the polymerization reaction.File | Dimensione | Formato | |
---|---|---|---|
Bovesecchi2018.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.