We construct an approximate renormalization transformation that combines Kolmogorov-Arnol'd-Moser and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamiltonians. For the spiral mean frequency vector, we find numerically that the iterations of the transformation on nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding critical invariant tori have the same type of scaling properties. We numerically investigate the structure of the attracting set on the critical surface and find that it is a strange nonchaotic attractor. We compute exponents that characterize its universality class.

Chandre, C., Jauslin, H., Benfatto, G., Celletti, A. (1999). Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom. PHYSICAL REVIEW E, 60(5), 5412-5421 [10.1103/PhysRevE.60.5412].

Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom

BENFATTO, GIUSEPPE;CELLETTI, ALESSANDRA
1999-01-01

Abstract

We construct an approximate renormalization transformation that combines Kolmogorov-Arnol'd-Moser and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamiltonians. For the spiral mean frequency vector, we find numerically that the iterations of the transformation on nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding critical invariant tori have the same type of scaling properties. We numerically investigate the structure of the attracting set on the critical surface and find that it is a strange nonchaotic attractor. We compute exponents that characterize its universality class.
1999
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
KAM TORI; RENORMALIZATION GROUP; STRANGE ATTRACTORS
Chandre, C., Jauslin, H., Benfatto, G., Celletti, A. (1999). Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom. PHYSICAL REVIEW E, 60(5), 5412-5421 [10.1103/PhysRevE.60.5412].
Chandre, C; Jauslin, H; Benfatto, G; Celletti, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PhysRevE.60.5412.pdf

accesso aperto

Descrizione: File pdf della rivista
Dimensione 147.47 kB
Formato Adobe PDF
147.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/23735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact