We construct an approximate renormalization scheme for Hamiltonian systems with two degrees of freedom. This scheme is a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. It makes the connection between the approximate renormalization procedure derived by Escande and Doveil and a systematic expansion of the transformation. In particular, we show that the two main approximations, consisting in keeping only the quadratic terms in the actions and the two main resonances, keep the essential information on the threshold of the breakup of invariant tori.

Chandre, C., Jauslin, H., Benfatto, G. (1999). An approximate KAM-renormalization-group scheme for Hamiltonian systems. JOURNAL OF STATISTICAL PHYSICS, 94(1-2), 241-251 [10.1023/A:1004519514702].

An approximate KAM-renormalization-group scheme for Hamiltonian systems

BENFATTO, GIUSEPPE
1999-01-01

Abstract

We construct an approximate renormalization scheme for Hamiltonian systems with two degrees of freedom. This scheme is a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. It makes the connection between the approximate renormalization procedure derived by Escande and Doveil and a systematic expansion of the transformation. In particular, we show that the two main approximations, consisting in keeping only the quadratic terms in the actions and the two main resonances, keep the essential information on the threshold of the breakup of invariant tori.
1999
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Invariant tori; KAM theory; Non-trivial fixed point; Renormalization group
Chandre, C., Jauslin, H., Benfatto, G. (1999). An approximate KAM-renormalization-group scheme for Hamiltonian systems. JOURNAL OF STATISTICAL PHYSICS, 94(1-2), 241-251 [10.1023/A:1004519514702].
Chandre, C; Jauslin, H; Benfatto, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
KAM_CH.pdf

accesso aperto

Descrizione: Copia personale, identica a quella pubblicata
Dimensione 92.05 kB
Formato Adobe PDF
92.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/23734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact