Development and growth are complex and tumultuous processes. Modern economic growth theories identify some key determinants of economic growth. However, the relative importance of the determinants remains unknown, and additional variables may help clarify the directions and dimensions of the interactions. The novel stream of literature on economic complexity goes beyond aggregate measures of productive inputs and considers instead a more granular and structural view of the productive possibilities of countries, i.e., their capabilities. Different endowments of capabilities are crucial ingredients in explaining differences in economic performances. In this paper we employ economic fitness, a measure of productive capabilities obtained through complex network techniques. Focusing on the combined roles of fitness and some more traditional drivers of growth—GDP per capita, capital intensity, employment ratio, life expectancy, human capital and total factor productivity—we build a bridge between economic growth theories and the economic complexity literature. Our findings show that fitness plays a crucial role in fostering economic growth and, when it is included in the analysis, can be either complementary to traditional drivers of growth or can completely overshadow them. Notably, for the most complex countries, which have the most diversified export baskets and the largest endowments of capabilities, fitness is complementary to the chosen growth determinants in enhancing economic growth. The empirical findings are in agreement with neoclassical and endogenous growth theories. By contrast, for countries with intermediate and low capability levels, fitness emerges as the key growth driver. This suggests that economic models should account for capabilities; in fact, describing the technological possibilities of countries solely in terms of their production functions may lead to a misinterpretation of the roles of factors.
Sbardella, A., Pugliese, E., Zaccaria, A., Scaramozzino, P. (2018). The role of complex analysis in modelling economic growth. ENTROPY, 20(11), 883 [10.3390/e20110883].
The role of complex analysis in modelling economic growth
Scaramozzino P.Membro del Collaboration Group
2018-01-01
Abstract
Development and growth are complex and tumultuous processes. Modern economic growth theories identify some key determinants of economic growth. However, the relative importance of the determinants remains unknown, and additional variables may help clarify the directions and dimensions of the interactions. The novel stream of literature on economic complexity goes beyond aggregate measures of productive inputs and considers instead a more granular and structural view of the productive possibilities of countries, i.e., their capabilities. Different endowments of capabilities are crucial ingredients in explaining differences in economic performances. In this paper we employ economic fitness, a measure of productive capabilities obtained through complex network techniques. Focusing on the combined roles of fitness and some more traditional drivers of growth—GDP per capita, capital intensity, employment ratio, life expectancy, human capital and total factor productivity—we build a bridge between economic growth theories and the economic complexity literature. Our findings show that fitness plays a crucial role in fostering economic growth and, when it is included in the analysis, can be either complementary to traditional drivers of growth or can completely overshadow them. Notably, for the most complex countries, which have the most diversified export baskets and the largest endowments of capabilities, fitness is complementary to the chosen growth determinants in enhancing economic growth. The empirical findings are in agreement with neoclassical and endogenous growth theories. By contrast, for countries with intermediate and low capability levels, fitness emerges as the key growth driver. This suggests that economic models should account for capabilities; in fact, describing the technological possibilities of countries solely in terms of their production functions may lead to a misinterpretation of the roles of factors.File | Dimensione | Formato | |
---|---|---|---|
Entropy 2018.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
4.03 MB
Formato
Adobe PDF
|
4.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.