We study the law of functionals whose prototype is integral(0)(+infinity) e(s)(B(V)) dW(s)((mu),) where B-(nu), W-(mu) are independent Brownian motions with drift. These functionals appear naturally in risk theory as well as in the study of invariant diffusions on the hyperbolic half-plane. Emphasis is put on the fact that the results-are obtained in two independent, very different fashions (invariant diffusions on the hyperbolic half-plane and Bessel processes).

Baldi, P., Casadio Tarabusi, E., Figa Talamanca, A., Yor, M. (2001). Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities. REVISTA MATEMATICA IBEROAMERICANA, 17(3), 587-605.

Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities

BALDI, PAOLO;
2001-01-01

Abstract

We study the law of functionals whose prototype is integral(0)(+infinity) e(s)(B(V)) dW(s)((mu),) where B-(nu), W-(mu) are independent Brownian motions with drift. These functionals appear naturally in risk theory as well as in the study of invariant diffusions on the hyperbolic half-plane. Emphasis is put on the fact that the results-are obtained in two independent, very different fashions (invariant diffusions on the hyperbolic half-plane and Bessel processes).
2001
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Baldi, P., Casadio Tarabusi, E., Figa Talamanca, A., Yor, M. (2001). Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities. REVISTA MATEMATICA IBEROAMERICANA, 17(3), 587-605.
Baldi, P; Casadio Tarabusi, E; Figa Talamanca, A; Yor, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
RMI-vol17(2001)-no3-p587-605.pdf

accesso aperto

Descrizione: full text
Licenza: Creative commons
Dimensione 276.93 kB
Formato Adobe PDF
276.93 kB Adobe PDF Visualizza/Apri

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/23690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact