Severe acute respiratory syndrome (SARS) is a newly emerging, highly transmissible and fatal disease caused by a previously unknown coronavirus (SARS-CoV). Existing in non-identified animal reservoirs, SARS-CoV continues to represent a threat to humans because there is no effective specific antiviral therapy for coronavirus infections. Objectives: Starting from the observation that cyclopentenone cyclooxygenase (COX) metabolites are active against several RNA viruses, we investigated the effect of the COX inhibitor indomethacin on coronavirus replication. Methods: Work involving infectious SARS-CoV was performed in biosafety level 3 facilities. SARS-CoV was grown in monkey VERO cells and human lung epithelial A549 cells, while canine coronavirus (CCoV) was grown in A72 canine cells. Antiviral activity was analysed by determining infective virus titres by TCID50, viral RNA synthesis by Northern blot analysis and real-time RT-PCR, and viral protein synthesis by SDS-PAGE analysis after S-35-methionine-labelling. Antiviral efficacy in vivo was determined by evaluating virus titres in CCoV-infected dogs treated orally with 1 mg/kg body weight indomethacin (INDO). Results: Unexpectedly, we found that INDO has a potent direct antiviral activity against the coronaviruses SARS-CoV and CCoV. INDO does not affect coronavirus binding or entry into host cells, but acts by blocking viral RNA synthesis at cytoprotective doses. This effect is independent of cyclooxygenase inhibition. INDO's potent antiviral activity (>1,000-fold reduction in virus yield) was confirmed in vivo in CCoV-infected dogs. Conclusions: The results identify INDO as a potent inhibitor of coronavirus replication and suggest that, having both anti-inflammatory and antiviral activity, INDO could be beneficial in SARS therapy.

Amici, C., Di Caro, A., Ciucci, A., Chiappa, L., Castilletti, C., Martella, V., et al. (2006). Indomethacin has a potent antiviral activity against SARS coronavirus. ANTIVIRAL THERAPY, 11(8), 1021-1030.

Indomethacin has a potent antiviral activity against SARS coronavirus

AMICI, CARLA;SANTORO, MARIA GABRIELLA
2006-01-01

Abstract

Severe acute respiratory syndrome (SARS) is a newly emerging, highly transmissible and fatal disease caused by a previously unknown coronavirus (SARS-CoV). Existing in non-identified animal reservoirs, SARS-CoV continues to represent a threat to humans because there is no effective specific antiviral therapy for coronavirus infections. Objectives: Starting from the observation that cyclopentenone cyclooxygenase (COX) metabolites are active against several RNA viruses, we investigated the effect of the COX inhibitor indomethacin on coronavirus replication. Methods: Work involving infectious SARS-CoV was performed in biosafety level 3 facilities. SARS-CoV was grown in monkey VERO cells and human lung epithelial A549 cells, while canine coronavirus (CCoV) was grown in A72 canine cells. Antiviral activity was analysed by determining infective virus titres by TCID50, viral RNA synthesis by Northern blot analysis and real-time RT-PCR, and viral protein synthesis by SDS-PAGE analysis after S-35-methionine-labelling. Antiviral efficacy in vivo was determined by evaluating virus titres in CCoV-infected dogs treated orally with 1 mg/kg body weight indomethacin (INDO). Results: Unexpectedly, we found that INDO has a potent direct antiviral activity against the coronaviruses SARS-CoV and CCoV. INDO does not affect coronavirus binding or entry into host cells, but acts by blocking viral RNA synthesis at cytoprotective doses. This effect is independent of cyclooxygenase inhibition. INDO's potent antiviral activity (>1,000-fold reduction in virus yield) was confirmed in vivo in CCoV-infected dogs. Conclusions: The results identify INDO as a potent inhibitor of coronavirus replication and suggest that, having both anti-inflammatory and antiviral activity, INDO could be beneficial in SARS therapy.
2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/07 - MICROBIOLOGIA E MICROBIOLOGIA CLINICA
English
Con Impact Factor ISI
indometacin; prostaglandin synthase; virus RNA; animal cell; animal experiment; animal model; antiviral activity; article; biosafety; cell protection; controlled study; drug efficacy; drug mechanism; enzyme inhibition; human; human cell; in vitro study; in vivo study; lung alveolus epithelium; nonhuman; Northern blotting; polyacrylamide gel electrophoresis; priority journal; protein synthesis; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA synthesis; SARS coronavirus; severe acute respiratory syndrome; Vero cell; virus replication; Animals; Antiviral Agents; Aspirin; Cell Line; Cercopithecus aethiops; Coronavirus Infections; Coronavirus, Canine; Dog Diseases; Dogs; Dose-Response Relationship, Drug; Feces; Humans; Indomethacin; Interferon-alpha; Ribavirin; RNA, Viral; SARS Virus; Virus Replication
Amici, C., Di Caro, A., Ciucci, A., Chiappa, L., Castilletti, C., Martella, V., et al. (2006). Indomethacin has a potent antiviral activity against SARS coronavirus. ANTIVIRAL THERAPY, 11(8), 1021-1030.
Amici, C; Di Caro, A; Ciucci, A; Chiappa, L; Castilletti, C; Martella, V; Decaro, N; Buonavoglia, C; Capobianchi, M; Santoro, Mg
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/23634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact