Equilibrium positions of a solid in large deformations. We investigate equilibrium positions of a solid in large deformations. We take the party that a solid can flatten in a solid with a lower dimension. A structure flattened by a power hammer is an example of such a situation. Moreover, we take into account the spacial variations of rotation matrix. We prove that under reasonable assumptions, there exist equilibrium positions which may be non-unique. To cite this article: M. Fremond, C R. Acad Sci. Paris, Ser. I347 (2009). (C) 2009 Academie des sciences. Publie par Elsevier Masson SAS. Tous droits reserves.

Fremond, M. (2009). Equilibrium positions of a solid in large deformations. COMPTES RENDUS MATHÉMATIQUE, 347(2009/08/07 00:00:00.000), 457-462 [10.1016/j.crma.2009.02.001].

Equilibrium positions of a solid in large deformations

FREMOND, MICHEL
2009-01-01

Abstract

Equilibrium positions of a solid in large deformations. We investigate equilibrium positions of a solid in large deformations. We take the party that a solid can flatten in a solid with a lower dimension. A structure flattened by a power hammer is an example of such a situation. Moreover, we take into account the spacial variations of rotation matrix. We prove that under reasonable assumptions, there exist equilibrium positions which may be non-unique. To cite this article: M. Fremond, C R. Acad Sci. Paris, Ser. I347 (2009). (C) 2009 Academie des sciences. Publie par Elsevier Masson SAS. Tous droits reserves.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore ICAR/08 - SCIENZA DELLE COSTRUZIONI
French
Large deformations
Fremond, M. (2009). Equilibrium positions of a solid in large deformations. COMPTES RENDUS MATHÉMATIQUE, 347(2009/08/07 00:00:00.000), 457-462 [10.1016/j.crma.2009.02.001].
Fremond, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CRASS14029.pdf

accesso aperto

Descrizione: articolo
Dimensione 389.43 kB
Formato Adobe PDF
389.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/23612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact