We consider games of strategic substitutes and complements on networks and introduce two evolutionary dynamics in order to refine their multiplicity of equilibria. Within mean field, we find that for the best-shot game, taken as a representative example of strategic substitutes, replicator-like dynamics does not lead to Nash equilibria, whereas it leads to a unique equilibrium for complements, represented by a coordination game. On the other hand, when the dynamics becomes more cognitively demanding, predictions are always Nash equilibria: for the best-shot game we find a reduced set of equilibria with a definite value of the fraction of contributors, whereas, for the coordination game, symmetric equilibria arise only for low or high initial fractions of cooperators. We further extend our study by considering complex topologies through heterogeneous mean field and show that the nature of the selected equilibria does not change for the best-shot game. However, for coordination games, we reveal an important difference: on infinitely large scale-free networks, cooperative equilibria arise for any value of the incentive to cooperate. Our analytical results are confirmed by numerical simulations and open the question of whether there can be dynamics that consistently leads to stringent equilibria refinements for both classes of games.
Cimini, G. (2017). Evolutionary Network Games: Equilibria from Imitation and Best Response Dynamics. COMPLEXITY, 2017 [10.1155/2017/7259032].
Evolutionary Network Games: Equilibria from Imitation and Best Response Dynamics
Cimini, Giulio
2017-01-01
Abstract
We consider games of strategic substitutes and complements on networks and introduce two evolutionary dynamics in order to refine their multiplicity of equilibria. Within mean field, we find that for the best-shot game, taken as a representative example of strategic substitutes, replicator-like dynamics does not lead to Nash equilibria, whereas it leads to a unique equilibrium for complements, represented by a coordination game. On the other hand, when the dynamics becomes more cognitively demanding, predictions are always Nash equilibria: for the best-shot game we find a reduced set of equilibria with a definite value of the fraction of contributors, whereas, for the coordination game, symmetric equilibria arise only for low or high initial fractions of cooperators. We further extend our study by considering complex topologies through heterogeneous mean field and show that the nature of the selected equilibria does not change for the best-shot game. However, for coordination games, we reveal an important difference: on infinitely large scale-free networks, cooperative equilibria arise for any value of the incentive to cooperate. Our analytical results are confirmed by numerical simulations and open the question of whether there can be dynamics that consistently leads to stringent equilibria refinements for both classes of games.File | Dimensione | Formato | |
---|---|---|---|
complexity_7259032.pdf
accesso aperto
Licenza:
Non specificato
Dimensione
2.63 MB
Formato
Adobe PDF
|
2.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.