In this paper the diffusion approximation of a Markov chain for hierarchic cooperative interactions in proteins is considered. The behaviour of the limiting diffusion, which takes values in the closed square [0,1]2, is then studied. The existence, absolute continuity and uniqueness of the stationary distribution are proved and its ergodic and reversibility properties analyzed. The problem of the attainability of the boundary is also considered.

Abundo, M.r., Baldi, P., Caramellino, L. (1998). A diffusion approximation which models hierarchic interactions in cooperative biological systems. OPEN SYSTEMS & INFORMATION DYNAMICS, 5(1), 1-23 [10.1023/A:1009658417365].

A diffusion approximation which models hierarchic interactions in cooperative biological systems

ABUNDO, MARIO ROSOLINO;BALDI, PAOLO;CARAMELLINO, LUCIA
1998-01-01

Abstract

In this paper the diffusion approximation of a Markov chain for hierarchic cooperative interactions in proteins is considered. The behaviour of the limiting diffusion, which takes values in the closed square [0,1]2, is then studied. The existence, absolute continuity and uniqueness of the stationary distribution are proved and its ergodic and reversibility properties analyzed. The problem of the attainability of the boundary is also considered.
1998
Pubblicato
Rilevanza nazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
Abundo, M.r., Baldi, P., Caramellino, L. (1998). A diffusion approximation which models hierarchic interactions in cooperative biological systems. OPEN SYSTEMS & INFORMATION DYNAMICS, 5(1), 1-23 [10.1023/A:1009658417365].
Abundo, Mr; Baldi, P; Caramellino, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/23402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact