peripheral measures of autonomic nervous system (ANS)activity at rest have been extensively employed as putative biomarkers of autonomic cardiac control. However, a comprehensive characterization of the brain-based central autonomic network (CAN)sustaining cardiovascular oscillations at rest is missing, limiting the interpretability of these ANS measures as biomarkers of cardiac control. we evaluated combined cardiac and fMRI data from 34 healthy subjects from the human connectome project to detect brain areas functionally linked to cardiovagal modulation at rest. specifically, we combined voxel-wise fMRI analysis with instantaneous heartbeat and spectral estimates obtained from inhomogeneous linear point-process models. we found exclusively negative associations between cardiac parasympathetic activity at rest and a widespread network including bilateral anterior insulae, right dorsal middle and left posterior insula, right parietal operculum, bilateral medial dorsal and ventrolateral posterior thalamic nuclei, anterior and posterior mid-cingulate cortex, medial frontal gyrus/pre-supplementary motor area. conversely, we found only positive associations between instantaneous heart rate and brain activity in areas including frontopolar cortex, dorsomedial prefrontal cortex, anterior, middle and posterior cingulate cortices, superior frontal gyrus, and precuneus. taken together, our data suggests a much wider involvement of diverse brain areas in the CAN at rest than previously thought, which could reflect a differential (both spatially and directionally)CAN activation according to the underlying task. our insight into CAN activity at rest also allows the investigation of its impairment in clinical populations in which task-based fMRI is difficult to obtain (e.g., comatose patients or infants).

Valenza, G., Sclocco, R., Duggento, A., Passamonti, L., Napadow, V., Barbieri, R., et al. (2019). The central autonomic network at rest: Uncovering functional MRI correlates of time-varying autonomic outflow. NEUROIMAGE, 197, 383-390 [10.1016/j.neuroimage.2019.04.075].

The central autonomic network at rest: Uncovering functional MRI correlates of time-varying autonomic outflow

Duggento A.;Toschi N.
2019-01-01

Abstract

peripheral measures of autonomic nervous system (ANS)activity at rest have been extensively employed as putative biomarkers of autonomic cardiac control. However, a comprehensive characterization of the brain-based central autonomic network (CAN)sustaining cardiovascular oscillations at rest is missing, limiting the interpretability of these ANS measures as biomarkers of cardiac control. we evaluated combined cardiac and fMRI data from 34 healthy subjects from the human connectome project to detect brain areas functionally linked to cardiovagal modulation at rest. specifically, we combined voxel-wise fMRI analysis with instantaneous heartbeat and spectral estimates obtained from inhomogeneous linear point-process models. we found exclusively negative associations between cardiac parasympathetic activity at rest and a widespread network including bilateral anterior insulae, right dorsal middle and left posterior insula, right parietal operculum, bilateral medial dorsal and ventrolateral posterior thalamic nuclei, anterior and posterior mid-cingulate cortex, medial frontal gyrus/pre-supplementary motor area. conversely, we found only positive associations between instantaneous heart rate and brain activity in areas including frontopolar cortex, dorsomedial prefrontal cortex, anterior, middle and posterior cingulate cortices, superior frontal gyrus, and precuneus. taken together, our data suggests a much wider involvement of diverse brain areas in the CAN at rest than previously thought, which could reflect a differential (both spatially and directionally)CAN activation according to the underlying task. our insight into CAN activity at rest also allows the investigation of its impairment in clinical populations in which task-based fMRI is difficult to obtain (e.g., comatose patients or infants).
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
Settore PHYS-06/A - Fisica per le scienze della vita, l'ambiente e i beni culturali
English
Autonomic nervous system; Central autonomic network; Heart rate variability; Human connectome project; Point process
http://www.elsevier.com/inca/publications/store/6/2/2/9/2/5/index.htt
Valenza, G., Sclocco, R., Duggento, A., Passamonti, L., Napadow, V., Barbieri, R., et al. (2019). The central autonomic network at rest: Uncovering functional MRI correlates of time-varying autonomic outflow. NEUROIMAGE, 197, 383-390 [10.1016/j.neuroimage.2019.04.075].
Valenza, G; Sclocco, R; Duggento, A; Passamonti, L; Napadow, V; Barbieri, R; Toschi, N
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2019central.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/233490
Citazioni
  • ???jsp.display-item.citation.pmc??? 55
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 79
social impact