Predicting variability in cognition traits is an attractive and challenging area of research, where different approaches and datasets have been implemented with mixed results. Some powerful Machine Learning algorithms employed before are difficult to interpret, while other algorithms are easy to interpret but might not be as powerful. To improve understanding of individual cognitive differences in humans, we make use of the most recent developments in Machine Learning in which powerful prediction models can be interpreted with confidence. We used neuroimaging data and a variety of behavioural, cognitive, affective and health measures from 905 people obtained from the Human Connectome Project (HCP). As a main contribution of this paper, we show how one could interpret the neuroanatomical basis of cognition, with recent methods which we believe are not yet fully explored in the field. By reducing neuroimages to a well characterised set of features generated from surface-based morphometry and cortical myelin estimates, we make the interpretation of such models easier as each feature is self-explanatory. The code used in this tool is available in a public repository: https://github.com/tjiagoM/interpreting-cognition-paper-2019.

Azevedo, T., Passamonti, L., Lio, P., Toschi, N. (2019). A Machine Learning Tool for Interpreting Differences in Cognition Using Brain Features. In IFIP Advances in Information and Communication Technology (pp. 475-486). Springer New York LLC [10.1007/978-3-030-19823-7_40].

A Machine Learning Tool for Interpreting Differences in Cognition Using Brain Features

Toschi N.
2019-01-01

Abstract

Predicting variability in cognition traits is an attractive and challenging area of research, where different approaches and datasets have been implemented with mixed results. Some powerful Machine Learning algorithms employed before are difficult to interpret, while other algorithms are easy to interpret but might not be as powerful. To improve understanding of individual cognitive differences in humans, we make use of the most recent developments in Machine Learning in which powerful prediction models can be interpreted with confidence. We used neuroimaging data and a variety of behavioural, cognitive, affective and health measures from 905 people obtained from the Human Connectome Project (HCP). As a main contribution of this paper, we show how one could interpret the neuroanatomical basis of cognition, with recent methods which we believe are not yet fully explored in the field. By reducing neuroimages to a well characterised set of features generated from surface-based morphometry and cortical myelin estimates, we make the interpretation of such models easier as each feature is self-explanatory. The code used in this tool is available in a public repository: https://github.com/tjiagoM/interpreting-cognition-paper-2019.
2019
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
Rilevanza internazionale
Articolo scientifico in atti di convegno
Brain; Cognition; Data science; Interpretability; Machine learning; Morphometry; Myelin; SHAP; Tool; XGBoost
http://www.springer.com/series/6102
Azevedo, T., Passamonti, L., Lio, P., Toschi, N. (2019). A Machine Learning Tool for Interpreting Differences in Cognition Using Brain Features. In IFIP Advances in Information and Communication Technology (pp. 475-486). Springer New York LLC [10.1007/978-3-030-19823-7_40].
Azevedo, T; Passamonti, L; Lio, P; Toschi, N
Contributo in libro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/233455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact