Let M be a Kobayashi hyperbolic homogeneous manifold. Let F be a holomorphic foliation on M invariant under a transitive group G of bi-holomorphisms. We prove that the leaves of F are the fibers of a holomorphic G-equivariant submersion pi : M -> N onto a G-homogeneous complex manifold N. We also show that if Q is an automorphism family of a hyperbolic convex (possibly unbounded) domain D in C-n, then the fixed point set of Q is either empty or a connected complex submanifold of D.

Bracci, F., Iannuzzi, A., Mckay, B. (2016). Invariant holomorphic foliations on kobayashi hyperbolic homogeneous manifolds. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 144(4), 1619-1629 [10.1090/proc/12817].

Invariant holomorphic foliations on kobayashi hyperbolic homogeneous manifolds

Bracci F.
;
Iannuzzi A.;
2016-01-01

Abstract

Let M be a Kobayashi hyperbolic homogeneous manifold. Let F be a holomorphic foliation on M invariant under a transitive group G of bi-holomorphisms. We prove that the leaves of F are the fibers of a holomorphic G-equivariant submersion pi : M -> N onto a G-homogeneous complex manifold N. We also show that if Q is an automorphism family of a hyperbolic convex (possibly unbounded) domain D in C-n, then the fixed point set of Q is either empty or a connected complex submanifold of D.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Kobayashi hyperbolicity; homogeneous manifolds; holomorphic foliation
Bracci, F., Iannuzzi, A., Mckay, B. (2016). Invariant holomorphic foliations on kobayashi hyperbolic homogeneous manifolds. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 144(4), 1619-1629 [10.1090/proc/12817].
Bracci, F; Iannuzzi, A; Mckay, B
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/233023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact