Let M be a Kobayashi hyperbolic homogeneous manifold. Let F be a holomorphic foliation on M invariant under a transitive group G of bi-holomorphisms. We prove that the leaves of F are the fibers of a holomorphic G-equivariant submersion pi : M -> N onto a G-homogeneous complex manifold N. We also show that if Q is an automorphism family of a hyperbolic convex (possibly unbounded) domain D in C-n, then the fixed point set of Q is either empty or a connected complex submanifold of D.
Bracci, F., Iannuzzi, A., & McKay, B. (2016). Invariant holomorphic foliations on kobayashi hyperbolic homogeneous manifolds. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 144(4), 1619-1629.
Tipologia: | Articolo su rivista |
Citazione: | Bracci, F., Iannuzzi, A., & McKay, B. (2016). Invariant holomorphic foliations on kobayashi hyperbolic homogeneous manifolds. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 144(4), 1619-1629. |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/03 |
Revisione (peer review): | Esperti anonimi |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1090/proc/12817 |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2016 |
Titolo: | Invariant holomorphic foliations on kobayashi hyperbolic homogeneous manifolds |
Autori: | |
Autori: | Bracci, F; Iannuzzi, A; McKay, B |
Appare nelle tipologie: | 01 - Articolo su rivista |