The addition of fibers has been proven successful to simplify reinforcement in precast tunnel segments, allowing as a function of both segment typology and fiber reinforced concrete (FRC) toughness a total or partial replacement of the conventional reinforcement. Results from an experimental research aimed at comparing the structural behavior of segments made with conventional (only rebars, RC) or hybrid (rebars + fibers) reinforcement are presented. The experimental program consisted of flexural and point load tests (which reproduces the jack actions during TBM operations) carried out on four large-scale precast tunnel segments representative of a metro tunnel lining characterized by an internal diameter of 5.80 m and a thickness of 0.30 m. The main goal of the experimental program was to evaluate the possibility of using macro-synthetic polypropylene fibers (Polypropylene Fiber Reinforced Concrete, PFRC) in combination with a lower amount of conventional rebars (optimized reinforcement, RCO) for guaranteeing the required segment performance. Experimental results indicate that macro-synthetic fibers may be very effective in combination with conventional rebars to withstand the main stresses that arise in a segment both at initial and final phases, proving that the adoption of hybrid reinforcement solution using macro-synthetic fiber is possible for metro tunnel lining.
Conforti, A., Trabucchi, I., Tiberti, G., Plizzari, G.a., Caratelli, A., Meda, A. (2019). Precast tunnel segments for metro tunnel lining: A hybrid reinforcement solution using macro-synthetic fibers. ENGINEERING STRUCTURES, 199, 109628 [10.1016/j.engstruct.2019.109628].
Precast tunnel segments for metro tunnel lining: A hybrid reinforcement solution using macro-synthetic fibers
Meda A.
2019-01-01
Abstract
The addition of fibers has been proven successful to simplify reinforcement in precast tunnel segments, allowing as a function of both segment typology and fiber reinforced concrete (FRC) toughness a total or partial replacement of the conventional reinforcement. Results from an experimental research aimed at comparing the structural behavior of segments made with conventional (only rebars, RC) or hybrid (rebars + fibers) reinforcement are presented. The experimental program consisted of flexural and point load tests (which reproduces the jack actions during TBM operations) carried out on four large-scale precast tunnel segments representative of a metro tunnel lining characterized by an internal diameter of 5.80 m and a thickness of 0.30 m. The main goal of the experimental program was to evaluate the possibility of using macro-synthetic polypropylene fibers (Polypropylene Fiber Reinforced Concrete, PFRC) in combination with a lower amount of conventional rebars (optimized reinforcement, RCO) for guaranteeing the required segment performance. Experimental results indicate that macro-synthetic fibers may be very effective in combination with conventional rebars to withstand the main stresses that arise in a segment both at initial and final phases, proving that the adoption of hybrid reinforcement solution using macro-synthetic fiber is possible for metro tunnel lining.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0141029619301257-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
3.61 MB
Formato
Adobe PDF
|
3.61 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.