Human nutrition is a branch of medicine based on foods biochemical interactions with the human body. The phenotypic transition from health to disease status can be attributed to changes in genes and/or protein expression. For this reason, a new discipline has been developed called -omic science. In this review, we analyzed the role of -omics sciences (nutrigenetics, nutrigenomics, proteomics and metabolomics) in the health status and as possible therapeutic tool in chronic degenerative diseases. In particular, we focused on the role of nutrigenetics and the relationship between eating habits, changes in the DNA sequence and the onset of nutrition-related diseases. Moreover, we examined nutrigenomics and the effect of nutrients on gene expression. We perused the role of proteomics and metabolomics in personalized nutrition. In this scenario, we analyzed also how dysbiosis of gut microbiota can influence the onset and progression of chronic degenerative diseases. Moreover, nutrients influencing and regulating gene activity, both directly and indirectly, paves the way for personalized nutrition that plays a key role in the prevention and treatment of chronic degenerative diseases.
Di Renzo, L., Gualtieri, P., Romano, L., Marrone, G., Noce, A., Pujia, A., et al. (2019). Role of personalized nutrition in chronic-degenerative diseases. NUTRIENTS, 11(8), 1707 [10.3390/nu11081707].
Role of personalized nutrition in chronic-degenerative diseases
Di Renzo L.;Gualtieri P.;Noce A.;Pujia A.;Perrone M. A.;De Lorenzo A.
2019-01-01
Abstract
Human nutrition is a branch of medicine based on foods biochemical interactions with the human body. The phenotypic transition from health to disease status can be attributed to changes in genes and/or protein expression. For this reason, a new discipline has been developed called -omic science. In this review, we analyzed the role of -omics sciences (nutrigenetics, nutrigenomics, proteomics and metabolomics) in the health status and as possible therapeutic tool in chronic degenerative diseases. In particular, we focused on the role of nutrigenetics and the relationship between eating habits, changes in the DNA sequence and the onset of nutrition-related diseases. Moreover, we examined nutrigenomics and the effect of nutrients on gene expression. We perused the role of proteomics and metabolomics in personalized nutrition. In this scenario, we analyzed also how dysbiosis of gut microbiota can influence the onset and progression of chronic degenerative diseases. Moreover, nutrients influencing and regulating gene activity, both directly and indirectly, paves the way for personalized nutrition that plays a key role in the prevention and treatment of chronic degenerative diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.