In this paper we prove a kind of rotational symmetry for solutions of semilinear elliptic systems in some bounded cylindrical domains. The symmetry theorems obtained hold for low-Morse index solutions whenever the nonlinearities satisfy some convexity assumptions. These results extend and improve those obtained in cite{DaPaSys, DaGlPa1, Pa, PaWe}.

Damascelli, L., Pacella, F. (2020). Sectional symmetry of solutions of elliptic systems in cylindrical domains. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 40(6), 3305-3325 [10.3934/dcds.2020045].

Sectional symmetry of solutions of elliptic systems in cylindrical domains

Damascelli,L;
2020-01-01

Abstract

In this paper we prove a kind of rotational symmetry for solutions of semilinear elliptic systems in some bounded cylindrical domains. The symmetry theorems obtained hold for low-Morse index solutions whenever the nonlinearities satisfy some convexity assumptions. These results extend and improve those obtained in cite{DaPaSys, DaGlPa1, Pa, PaWe}.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Foliated Schwarz symmetry, maximum principle, Morse index
Damascelli, L., Pacella, F. (2020). Sectional symmetry of solutions of elliptic systems in cylindrical domains. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 40(6), 3305-3325 [10.3934/dcds.2020045].
Damascelli, L; Pacella, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
SectionalSymmetryDCDS2020.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 418.61 kB
Formato Adobe PDF
418.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/230987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact