Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications. © 2018, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature.
Morales, P., Moyanova, S., Pavone, L., Fazi, L., Mirabile Gattia, D., Rapone, B., et al. (2018). Self-grafting carbon nanotubes on polymers for stretchable electronics. THE EUROPEAN PHYSICAL JOURNAL PLUS, 133(6) [10.1140/epjp/i2018-12040-0].
Self-grafting carbon nanotubes on polymers for stretchable electronics
Fazi, L.;Senesi, R.
Supervision
2018-01-01
Abstract
Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications. © 2018, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature.File | Dimensione | Formato | |
---|---|---|---|
2018_Morales_Self-gCNT_EPJP.pdf
accesso aperto
Licenza:
Copyright dell'editore
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.