In Duchenne muscular dystrophy (DMD), the absence of the dystrophin protein causes a variety of poorly understood secondary effects. Notably, muscle fibers of dystrophic individuals are characterized by mitochondrial dysfunctions, as revealed by a reduced ATP production rate and by defective oxidative phosphorylation. Here, we show that in a mouse model of DMD (mdx), fibro/adipogenic progenitors (FAPs) are characterized by a dysfunctional mitochondrial metabolism which correlates with increased adipogenic potential. Using high-sensitivity mass spectrometry-based proteomics, we report that a short-term high-fat diet (HFD) reprograms dystrophic FAP metabolism in vivo. By combining our proteomic dataset with a literature-derived signaling network, we revealed that HFD modulates the β-catenin-follistatin axis. These changes are accompanied by significant amelioration of the histological phenotype in dystrophic mice. Transplantation of purified FAPs from HFD-fed mice into the muscles of dystrophic recipients demonstrates that modulation of FAP metabolism can be functional to ameliorate the dystrophic phenotype. Our study supports metabolic reprogramming of muscle interstitial progenitor cells as a novel approach to alleviate some of the adverse outcomes of DMD.

Reggio, A., Rosina, M., Krahmer, N., Palma, A., Petrilli, L.l., Maiolatesi, G., et al. (2020). Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration. LIFE SCIENCE ALLIANCE, 3(3), e202000646 [10.26508/lsa.202000660].

Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration

Reggio, Alessio;Rosina, Marco;Petrilli, Lucia Lisa;Testa, Stefano;Gargioli, Cesare;Fuoco, Claudia;Castagnoli, Luisa;Cesareni, Gianni;Sacco, Francesca
2020-02-04

Abstract

In Duchenne muscular dystrophy (DMD), the absence of the dystrophin protein causes a variety of poorly understood secondary effects. Notably, muscle fibers of dystrophic individuals are characterized by mitochondrial dysfunctions, as revealed by a reduced ATP production rate and by defective oxidative phosphorylation. Here, we show that in a mouse model of DMD (mdx), fibro/adipogenic progenitors (FAPs) are characterized by a dysfunctional mitochondrial metabolism which correlates with increased adipogenic potential. Using high-sensitivity mass spectrometry-based proteomics, we report that a short-term high-fat diet (HFD) reprograms dystrophic FAP metabolism in vivo. By combining our proteomic dataset with a literature-derived signaling network, we revealed that HFD modulates the β-catenin-follistatin axis. These changes are accompanied by significant amelioration of the histological phenotype in dystrophic mice. Transplantation of purified FAPs from HFD-fed mice into the muscles of dystrophic recipients demonstrates that modulation of FAP metabolism can be functional to ameliorate the dystrophic phenotype. Our study supports metabolic reprogramming of muscle interstitial progenitor cells as a novel approach to alleviate some of the adverse outcomes of DMD.
4-feb-2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/18 - GENETICA
English
Reggio, A., Rosina, M., Krahmer, N., Palma, A., Petrilli, L.l., Maiolatesi, G., et al. (2020). Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration. LIFE SCIENCE ALLIANCE, 3(3), e202000646 [10.26508/lsa.202000660].
Reggio, A; Rosina, M; Krahmer, N; Palma, A; Petrilli, Ll; Maiolatesi, G; Massacci, G; Salvatori, I; Valle, C; Testa, S; Gargioli, C; Fuoco, C; Castagnoli, L; Cesareni, G; Sacco, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Regio et al. Life Sci Al.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.88 MB
Formato Adobe PDF
4.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/229802
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact