Regularity properties are investigated for the value function of the Bolza optimal control problem with affine dynamic and end-point constraints. In the absence of singular geodesics, we prove the local semiconcavity of the sub-Riemannian distance from a compact set Gamma subset of R-n. Such a regularity result was obtained by the second author and L. Rifford in Cannarsa and Rifford (2008) when Gamma is a singleton. Furthermore, we derive sensitivity relations for time optimal control problems with general target sets Gamma, that is, without imposing any geometric assumptions on Gamma. (C) 2019 Elsevier Ltd. All rights reserved.

Basco, V., Cannarsa, P., Frankowska, H. (2019). Semiconcavity results and sensitivity relations for the sub-Riemannian distance. NONLINEAR ANALYSIS, 184, 298-320 [10.1016/j.na.2019.02.008].

Semiconcavity results and sensitivity relations for the sub-Riemannian distance

Basco V.;Cannarsa P.
;
2019-01-01

Abstract

Regularity properties are investigated for the value function of the Bolza optimal control problem with affine dynamic and end-point constraints. In the absence of singular geodesics, we prove the local semiconcavity of the sub-Riemannian distance from a compact set Gamma subset of R-n. Such a regularity result was obtained by the second author and L. Rifford in Cannarsa and Rifford (2008) when Gamma is a singleton. Furthermore, we derive sensitivity relations for time optimal control problems with general target sets Gamma, that is, without imposing any geometric assumptions on Gamma. (C) 2019 Elsevier Ltd. All rights reserved.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Basco, V., Cannarsa, P., Frankowska, H. (2019). Semiconcavity results and sensitivity relations for the sub-Riemannian distance. NONLINEAR ANALYSIS, 184, 298-320 [10.1016/j.na.2019.02.008].
Basco, V; Cannarsa, P; Frankowska, H
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BCFx_sub_riem-4.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 361.33 kB
Formato Adobe PDF
361.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/229226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact